期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
基于卷积神经网络特征提取的病理语音识别
1
作者 姜羽菲 石宇 +2 位作者 何若男 陈益 曹辉 《电子设计工程》 2024年第20期26-30,共5页
针对传统病理语音识别效率低的问题,提出了一种利用卷积神经网络语音特征的病理语音识别方法,实现了特征的自动提取。从原始语音信号中提取梅尔语谱图特征,并对原始图像进行数据增强。基于迁移学习的思想,对Alex Net网络进行微调和训练... 针对传统病理语音识别效率低的问题,提出了一种利用卷积神经网络语音特征的病理语音识别方法,实现了特征的自动提取。从原始语音信号中提取梅尔语谱图特征,并对原始图像进行数据增强。基于迁移学习的思想,对Alex Net网络进行微调和训练,并将图像输入到训练好的卷积神经网络中提取语句级特征,输出时由时域金字塔匹配进行统一降维,得到相同长度的语音特征。使用神经网络和支持向量机分类器分别对提取好的语音特征进行分类,以完成病理语音识别。实验结果表明,神经网络能够很好地提取复杂和抽象的特征,避免了前期复杂繁琐的数据处理和数据分析工作,同时与传统特征提取方法相比准确率有所提高。 展开更多
关键词 病理语音识别 梅尔谱图 卷积神经网络 时域金字塔匹配
下载PDF
时域声波障碍反散射问题的神经网络方法
2
作者 刘一雄 孟品超 《长春理工大学学报(自然科学版)》 2024年第5期126-133,共8页
研究了一种求解时域声波移动障碍物反散射问题的神经网络方法。该方法由一维卷积模块和多头自注意力机制模块构成,其中一维卷积模块的特征提取能力有效捕捉散射数据的局部特征;多头自注意力机制模块的全局信息捕捉能力综合分析散射数据... 研究了一种求解时域声波移动障碍物反散射问题的神经网络方法。该方法由一维卷积模块和多头自注意力机制模块构成,其中一维卷积模块的特征提取能力有效捕捉散射数据的局部特征;多头自注意力机制模块的全局信息捕捉能力综合分析散射数据的全局特征,采用误差的反向传播进行训练,反演障碍物的运动轨迹。实验结果表明,该方法能有效反演移动障碍物的运动轨迹。 展开更多
关键词 时域声波反散射问题 多头自注意力 一维卷积 前馈神经网络
下载PDF
基于卷积神经网络的时域语音盲分离方法研究 被引量:1
3
作者 景源 孙浩源 《辽宁大学学报(自然科学版)》 CAS 2021年第3期204-214,共11页
已有的语音分离方法大多都是通过混合信号的频域表示来处理分离问题,然而这些方法一直存在着包括信号的相位与幅度的解耦、语音分离时频表示的次优性以及计算频谱的高时间延迟等问题.为了探索处理上述问题的方法,在原有卷积时域网络(Con... 已有的语音分离方法大多都是通过混合信号的频域表示来处理分离问题,然而这些方法一直存在着包括信号的相位与幅度的解耦、语音分离时频表示的次优性以及计算频谱的高时间延迟等问题.为了探索处理上述问题的方法,在原有卷积时域网络(Conv-TasNet)的卷积运算中对语音信号的长期依赖性进行了重新建模.为了弥补零填充导致的有效数据损失,新的时间卷积块会采取以递补数据代替零填充以保持输入输出长度一致,用有效数据代替卷积中的零填充来增加底层片段两端的卷积参与率,并减少相邻语音片段的20%层叠部分以减少计算量.改进后的模块用于分离两说话人的混合语音,得到的目标语音在信噪比方面比原方法改善了0.6%,相对于已有的时频掩蔽方法在性能相近的前提下其模型缩小为时频掩蔽方法的五分之一. 展开更多
关键词 语音分离 深度神经网络 端到端模型 时间卷积网络 时域 递补填充
下载PDF
基于集成时域卷积神经网络模型的水驱油田单井产量预测方法 被引量:10
4
作者 张蕾 窦宏恩 +6 位作者 王天智 王洪亮 彭翼 张继风 刘宗尚 米兰 蒋丽维 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2022年第5期996-1004,共9页
针对水驱油田单井产量变化大、预测难的问题,提出了一种基于时域卷积神经网络(TCN)的水驱油田单井产量预测方法,并进行实例验证。该方法从数据处理入手,依据注水井影响半径衡量油水井对应关系,增加油井当月受注水井影响程度为模型特征,... 针对水驱油田单井产量变化大、预测难的问题,提出了一种基于时域卷积神经网络(TCN)的水驱油田单井产量预测方法,并进行实例验证。该方法从数据处理入手,依据注水井影响半径衡量油水井对应关系,增加油井当月受注水井影响程度为模型特征,构建随机森林模型填补水驱开发动态数据空缺,根据含水率将单井生产历程划分为低含水、中含水、高含水、特高含水4个阶段,基于TCN建立阶段预测模型,采用麻雀搜索算法(SSA)优化模型超参数,最终将4个阶段模型集成为全生命周期模型用于产量预测。大庆油田应用实践表明:①所用数据处理方法较常规数据处理方法更符合产量数据特点、数据集更具真实性和完备性;②TCN模型较长短时记忆网络(LSTM)等11种时间序列模型预测精度更高;③集成全生命周期模型较单一全生命周期模型可显著降低产量预测误差。 展开更多
关键词 单井产量预测 时域卷积神经网络 时间序列预测 水驱油藏
下载PDF
应用时域卷积神经网络的地震波阻抗反演方法 被引量:6
5
作者 王泽峰 许辉群 +1 位作者 杨梦琼 赵桠松 《石油地球物理勘探》 EI CSCD 北大核心 2022年第2期279-286,296,I0002,共10页
地震波阻抗反演是储层预测研究的一种重要手段,线性地震波阻抗反演方法求解精度依赖于初始地质模型,而完全非线性方法可望得到高精度求解结果。有鉴于此,首先利用全卷积神经网络、因果卷积、膨胀卷积和残差块构建一个时域卷积神经网络(T... 地震波阻抗反演是储层预测研究的一种重要手段,线性地震波阻抗反演方法求解精度依赖于初始地质模型,而完全非线性方法可望得到高精度求解结果。有鉴于此,首先利用全卷积神经网络、因果卷积、膨胀卷积和残差块构建一个时域卷积神经网络(TCN),以建立地震数据与波阻抗之间的非线性映射关系;然后通过该网络对样本进行训练得到反演映射模型,进一步将地震数据输入该模型得到地震波阻抗。正演数据及实际数据测试结果表明,所提方法实现了地震数据到地震波阻抗间的映射,为地震波阻抗反演提供了具有并行计算能力和自适应结构的智能化方法,并在港2025区块砂泥岩储层预测中得到成功应用。 展开更多
关键词 地震波阻抗反演 时域卷积神经网络 反演映射模型 储层预测
下载PDF
基于时域信号特征和卷积神经网络的模拟电路故障诊断算法 被引量:3
6
作者 赵师兵 张志明 《计算机应用》 CSCD 北大核心 2022年第S02期320-326,共7页
模拟电路是现代电子技术的基础,及时识别与定位电路故障是保证系统正常工作的重要环节。针对此类工程问题,提出一种基于时域信号特征和卷积神经网络(CNN)的模拟电路故障判断算法。首先采集对象电路的激励输入和输出响应信号,经过处理后... 模拟电路是现代电子技术的基础,及时识别与定位电路故障是保证系统正常工作的重要环节。针对此类工程问题,提出一种基于时域信号特征和卷积神经网络(CNN)的模拟电路故障判断算法。首先采集对象电路的激励输入和输出响应信号,经过处理后成为1*N或2*N的时域信号序列输入CNN中,端到端实现从原始输入时域信号到故障识别期望输出的映射。实验仿真和实测结果表明,与经过信号预处理的频谱图+CNN和小波包变换+反向传播(BP)神经网络算法相比,该算法对结构性电路故障的识别正确率明显提高,在参数变化型电路故障的识别效果上总正确率相差不到1个百分点,但对于电路正常的判断正确率由93%提高到97%,避免出现某一具体故障正确率很低的情况,总体性能优于对比算法。该算法能够准确快速地识别和定位模拟电路中的结构性故障和参数变化型故障。 展开更多
关键词 双端口网络单元 模拟电路故障诊断 时域信号特征 卷积神经网络 识别和定位
下载PDF
基于双扩展时域自适应图卷积神经网络的骨架动作识别
7
作者 刘世平 陈萌 +3 位作者 夏文杰 马梓焱 黄元境 张文奇 《载人航天》 CSCD 北大核心 2022年第5期620-626,共7页
为提高人机交互过程中动作识别的识别率,提出了一种基于骨架的图卷积神经网络动作识别方法。首先,针对人机交互任务设计了一套动作命令集并进行数据采集,通过坐标系变换进行了视点无关处理,减少动作对位置的敏感性。然后,为了保证对整... 为提高人机交互过程中动作识别的识别率,提出了一种基于骨架的图卷积神经网络动作识别方法。首先,针对人机交互任务设计了一套动作命令集并进行数据采集,通过坐标系变换进行了视点无关处理,减少动作对位置的敏感性。然后,为了保证对整个动作过程中局部时间与全局时间的特征提取,通过对不同膨胀因子的卷积进行结合,设计了双扩展时域卷积层。最后,通过与自适应空间图卷积层结合建立双扩展时域自适应图卷积神经网络模型。对所建立的模型用数据集进行实验验证,结果表明:动作的总体识别率为98.5%,每一类动作的识别率达97.5%以上,识别效果优异,能够完成人机交互任务的需求。 展开更多
关键词 人机交互 动作识别 卷积神经网络 双扩展时域卷积
下载PDF
基于JEC-FDTD等效循环神经网络的电磁建模和等离子体参数反演
8
作者 覃一澜 马嘉禹 +1 位作者 付海洋 徐丰 《电波科学学报》 CSCD 北大核心 2024年第3期552-560,共9页
磁化等离子体中的电磁波传播是重要的研究课题,针对特定场景下的电磁等离子耦合问题,进行有效且准确的方程建模与参数求解具有极强的研究价值和挑战性,这是探究电磁波与等离子体复杂非线性相互作用机制的关键。文中设计了一种可用于电... 磁化等离子体中的电磁波传播是重要的研究课题,针对特定场景下的电磁等离子耦合问题,进行有效且准确的方程建模与参数求解具有极强的研究价值和挑战性,这是探究电磁波与等离子体复杂非线性相互作用机制的关键。文中设计了一种可用于电磁等离子体正逆向建模的循环神经网络(recurrent neural network,RNN),该网络正向传播过程等价于任意磁倾角情况下的电流密度卷积时域有限差分(current density convolution finite-difference time-domain,JEC-FDTD)方法,因此可以求解给定的电磁建模问题,并易于大规模并行计算。通过构建前向可微模拟过程,JEC-FDTD方法可以使用自动微分技术准确且高效地计算梯度,然后通过训练网络来解决反问题。因此,该方法可以有效利用观测到的时域散射场信号反演重要的等离子体参数。JEC-FDTD方法和RNN相结合,形成了较强的协同效应,使得模型具有可解释性和高效的计算效率,受益于深度学习提供的优化策略和专用硬件支持,可以适用于不同仿真场景下的电磁建模和等离子体参数反演。 展开更多
关键词 电流密度卷积时域有限差分(JEC-FDTD)方法 磁化等离子体 循环神经网络(RNN) 物理启发的机器学习算法 参数反演
下载PDF
动作分类卷积神经网络特征的时域属性校正方法
9
作者 毛琳 陈思宇 +1 位作者 杨大伟 张汝波 《大连民族大学学报》 2021年第1期24-30,共7页
针对3D卷积神经网络捕获的动作特征中时域属性信息的稳健性不足,提出一种时域属性校正方法。通过独创的属性映射法抽象出网络特征数据的时域属性,对比各组特征的属性信息后,对信息差异过大的特征数据进行校正。校正后的模型将增强特征... 针对3D卷积神经网络捕获的动作特征中时域属性信息的稳健性不足,提出一种时域属性校正方法。通过独创的属性映射法抽象出网络特征数据的时域属性,对比各组特征的属性信息后,对信息差异过大的特征数据进行校正。校正后的模型将增强特征之间的时域一致性,使卷积神经网络模型的动作分类性能得到优化。使用3D的ResNeXt-101作为仿真验证的基础模型,显著提升了该模型在两个常用动作分类数据集上的测试准确率,在使用了预训练模型后也能够保持良好的优化效果。 展开更多
关键词 3D卷积神经网络 动作分类 时域属性校正 属性映射
下载PDF
基于多尺度一维卷积神经网络的光纤振动事件识别 被引量:25
10
作者 吴俊 管鲁阳 +2 位作者 鲍明 许耀华 叶炜 《光电工程》 CAS CSCD 北大核心 2019年第5期76-83,共8页
针对相位敏感光时域反射(Φ-OTDR)分布式光纤振动传感系统如何对振动事件进行高效准确识别的问题,本文提出了一种基于多尺度一维卷积神经网络(MS 1-D CNN)的振动事件识别方法。该方法将原始振动信号经过预加重、归一化和谱减降噪的预处... 针对相位敏感光时域反射(Φ-OTDR)分布式光纤振动传感系统如何对振动事件进行高效准确识别的问题,本文提出了一种基于多尺度一维卷积神经网络(MS 1-D CNN)的振动事件识别方法。该方法将原始振动信号经过预加重、归一化和谱减降噪的预处理操作后得到的一维信号,直接通过MS 1-D CNN实现端到端的振动信号特征的提取和识别。MS1-DCNN在提取入侵振动信号特征时可兼顾信号时间和频率尺度,利用全连接层(FClayer)和Softmax层完成最终的识别过程,与二维卷积神经网络(2-D CNN)和一维卷积神经网络(1-D CNN)相比减少了待定参数数量。对破坏、敲击和干扰三类目标振动事件的光纤振动传感信号识别结果表明,MS 1-D CNN的识别正确率与2-D CNN相近,达到了96%以上,而处理速度提升一倍,在保持识别性能的前提下,有利于提高振动事件识别的实时性。 展开更多
关键词 分布式光纤振动传感 多尺度一维卷积神经网络 相位敏感光时域反射 振动事件识别 模式识别
下载PDF
分离通道联合卷积神经网络的自动调制识别 被引量:10
11
作者 郭有为 蒋鸿宇 +1 位作者 周劼 苏建中 《电讯技术》 北大核心 2018年第6期702-707,共6页
针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。... 针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。仿真结果表明,相比基于CNN的算法,所提算法在高信噪比下针对两个数据集的识别率分别提升7%和18%;此外,相比于基于特征提取的传统识别算法,其高阶调制识别性能平均提升3 d B。 展开更多
关键词 时域信号 自动调制识别 深度学习 卷积神经网络 分离通道
下载PDF
基于卷积神经网络的刀具磨损在线监测 被引量:44
12
作者 曹大理 孙惠斌 +1 位作者 张纪铎 莫蓉 《计算机集成制造系统》 EI CSCD 北大核心 2020年第1期74-80,共7页
为了提高刀具磨损在线监测的精度和泛化性能,提出一种基于卷积神经网络的刀具磨损量在线监测模型。利用时域传感器信号对刀具磨损量进行定量分析,避免数据预处理带来的信息丢失;采用深度网络自适应地提取特征,取代传统的人工特征提取过... 为了提高刀具磨损在线监测的精度和泛化性能,提出一种基于卷积神经网络的刀具磨损量在线监测模型。利用时域传感器信号对刀具磨损量进行定量分析,避免数据预处理带来的信息丢失;采用深度网络自适应地提取特征,取代传统的人工特征提取过程,并通过加深网络进一步挖掘信号中隐藏的微小特征。实验结果表明,该模型对刀具后刀面磨损量监测效果较好,可以有效避免人为特征提取的局限,精度和泛化性都有一定程度的提高。与相关研究的对比也证实了其可行性和有效性。 展开更多
关键词 刀具状态监测 刀具磨损量 时域传感器信号 卷积神经网络 特征提取
下载PDF
利用深度卷积神经网络将耳语转换为正常语音 被引量:8
13
作者 连海伦 周健 +1 位作者 胡雨婷 郑文明 《声学学报》 EI CSCD 北大核心 2020年第1期137-144,共8页
耳语是一种特殊发音方式,将耳语转换为正常语音是提升耳语质量和可懂度的关键方法。为了充分利用语音的频域和时域相关性实现耳语转换,提出了使用深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)将耳语转换为正常语音。它... 耳语是一种特殊发音方式,将耳语转换为正常语音是提升耳语质量和可懂度的关键方法。为了充分利用语音的频域和时域相关性实现耳语转换,提出了使用深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)将耳语转换为正常语音。它的卷积层用来提取连续帧语音谱包络之间的频域与时域的相关特征,而全连接层用来拟合耳语在卷积层提取的特征和对应正常语音之间的映射关系。实验结果表明与深度神经网络(Deep Neural Networks,DNN)模型相比,DCNN模型获得的转换后语音的梅尔倒谱失真度(Cepstral Distance,CD)降低了4.64%,而语音质量感知评价(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)与平均主观意见分(Mean Opinion Score,MOS)分别提高了5.41%,5.77%,9.68%。 展开更多
关键词 时域相关性 DNN 基频曲线 深度卷积神经网络 卷积 卷积
下载PDF
基于相关函数矩阵及卷积神经网络的结构健康监测研究
14
作者 王慧 王乐 田鑫海 《工程力学》 EI CSCD 北大核心 2023年第5期217-227,共11页
环境激励下利用时域振动响应构建的内积矩阵是结构健康监测中一种较好的结构特征参数。为了提升结构健康监测方法的识别准确率,构建内积矩阵时往往需要较多的振动响应测点,这将直接影响方法的工程实用性。该文基于时域振动响应的相关性... 环境激励下利用时域振动响应构建的内积矩阵是结构健康监测中一种较好的结构特征参数。为了提升结构健康监测方法的识别准确率,构建内积矩阵时往往需要较多的振动响应测点,这将直接影响方法的工程实用性。该文基于时域振动响应的相关性分析理论,将内积矩阵扩展到了相关函数矩阵,实现从少量的振动响应测点中获取更多的结构健康特征信息,以降低结构健康监测方法对测点数量的需求。进一步结合卷积神经网络优异的数据特征提取能力,以相关函数矩阵为输入、结构健康状态为输出,提出了基于相关函数矩阵及卷积神经网络的结构健康监测方法。典型航空加筋壁板螺栓松动监测的实验研究结果表明,仅采用结构上任意2个测点的时域振动响应,该文方法针对螺栓松动位置的识别准确率可达99%以上。 展开更多
关键词 结构健康监测 相关函数矩阵 卷积神经网络 时域振动响应 深度学习
下载PDF
基于卷积神经网络的工程塑料太赫兹光谱分类识别方法 被引量:1
15
作者 郑志杰 林振衡 +1 位作者 谢海鹤 聂泳忠 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第5期1387-1393,共7页
工程塑料优异的介电性能和金属可替代性,使其成为5G建设的热门材料。对外观相近但性能不同的几种工程塑料的检测与定性分析,有助于工程塑料更好地应用于5G线路板和天线模块的制造。应用太赫兹时域光谱技术(THz-TDS)对几种常见的工程塑料... 工程塑料优异的介电性能和金属可替代性,使其成为5G建设的热门材料。对外观相近但性能不同的几种工程塑料的检测与定性分析,有助于工程塑料更好地应用于5G线路板和天线模块的制造。应用太赫兹时域光谱技术(THz-TDS)对几种常见的工程塑料PEEK、 PPS、 ABS进行光谱检测,分别得到三种工程塑料在太赫兹波段的光谱数据。通过快速傅里叶变换,将三种工程塑料的THz时域光谱进行转换,获取工程塑料在0.1~1.2 THz下的THz频域光谱,并经过计算提取出相应的吸收光谱。分析THz时域光谱可知,不同种类工程塑料的THz时域谱存在时间延迟线和振幅的差异,可以直观地显示出各种塑料间的差异,这表明工程塑料的THz-TDS分类识别具有一定的可行性。但由于同属工程塑料,在太赫兹波段上表现为峰位、峰值相近,且各个材料无明显的THz特征吸收峰,因此无法直接以指纹谱进行判定。鉴于此,研究将非线性工具卷积神经网络(CNN)应用于无明显特征吸收峰的工程塑料识别研究的可行性,通过对CNN的网络结构和重要权值参数的优化,提出了一种改进的CNN分类模型。该模型使用LeakyRelu激活函数,添加BN层,利用Adams梯度下降算法,保证分类器的鲁棒性,加快网络分类速度,提高太赫兹吸收光谱识别精度,同时可以有效地解决由于THz光谱数据量不足而容易陷入局部最优问题。并将该方法同传统的线性工具主成分分析-支持向量机法(PCA-SVM)进行对比。对比实验结果显示:改进的CNN分类模型平均运行耗时为0.15 ms,训练集准确率为99.6%,测试集准确率达到98.8%;相较传统的PCA-SVM分类模型,其分类效率大幅提升,同时测试集分类准确率提高了27.3%,训练集分类准确率提高了30.9%。研究结果表明:将THz-TDS与改进的CNN分类模型相结合,能够实现对上述三种工程塑料的精确鉴别与分类识别,为工程塑料的非接触快速无损检测和识别提供了新方法,也为其他无THz特征峰物质的识别与检测方法研究提供参考。 展开更多
关键词 太赫兹时域光谱检测技术 工程塑料 卷积神经网络 分类识别
下载PDF
卷积神经网络在FDTD计算中的应用
16
作者 陶军 刘瑜 《安庆师范大学学报(自然科学版)》 2021年第4期20-24,共5页
基于卷积神经网络(CNN)结构与时域有限差分法(FDTD)在特定条件下的等价性特点,构建了适用于电磁传播计算的FDTD-CNN模型,通过一维自由空间和一维等离子体光子晶体两个实例计算,证明了FDTD-CNN模型能够较好地模拟不同介质特征的电磁传播... 基于卷积神经网络(CNN)结构与时域有限差分法(FDTD)在特定条件下的等价性特点,构建了适用于电磁传播计算的FDTD-CNN模型,通过一维自由空间和一维等离子体光子晶体两个实例计算,证明了FDTD-CNN模型能够较好地模拟不同介质特征的电磁传播现象,并且可以不重新训练,平滑地应用于激励源频率变化的问题,具有较好的泛化复用性。FDTD-CNN模型为电磁计算的数值建模提供了新的思路,也为长期积累的大量电磁计算数据的分析与再利用提供了有效途径。 展开更多
关键词 时域有限差分法 卷积神经网络 深度学习 电磁计算
下载PDF
基于循环神经网络的藏语语音识别声学模型 被引量:16
17
作者 黄晓辉 李京 《中文信息学报》 CSCD 北大核心 2018年第5期49-55,共7页
探索将循环神经网络和连接时序分类算法应用于藏语语音识别声学建模,实现端到端的模型训练。同时根据声学模型输入与输出的关系,通过在隐含层输出序列上引入时域卷积操作来对网络隐含层时域展开步数进行约简,从而有效提升模型的训练与... 探索将循环神经网络和连接时序分类算法应用于藏语语音识别声学建模,实现端到端的模型训练。同时根据声学模型输入与输出的关系,通过在隐含层输出序列上引入时域卷积操作来对网络隐含层时域展开步数进行约简,从而有效提升模型的训练与解码效率。实验结果显示,与传统基于隐马尔可夫模型的声学建模方法相比,循环神经网络模型在藏语拉萨话音素识别任务上具有更好的识别性能,而引入时域卷积操作的循环神经网络声学模型在保持同等识别性能的情况下,拥有更高的训练和解码效率。 展开更多
关键词 循环神经网络 藏语语音识别 声学建模 时域卷积
下载PDF
结合卷积神经网络与注意力机制的多域特征融合ECG心率失常分类
18
作者 曾宇辰 何照胜 +1 位作者 胡树林 廖柏林 《信息与电脑》 2023年第1期75-79,共5页
心率失常是心血管疾病诊断的重要手段,其自动分类具有重要的临床意义。为了提高心率失常分类的准确性,结合一维卷积神经网络(Convolutional Neural Networks,CNN)和注意力机制(Attention)提出了一种CNN+Attention的深度学习模型,使用CN... 心率失常是心血管疾病诊断的重要手段,其自动分类具有重要的临床意义。为了提高心率失常分类的准确性,结合一维卷积神经网络(Convolutional Neural Networks,CNN)和注意力机制(Attention)提出了一种CNN+Attention的深度学习模型,使用CNN提取心电信号的一维时域特征。针对一维时序心电信号时域特征表征能力有限的问题,使用短时傅里叶变换(Short-Time Fourier transform,STFT)将心电信号变换到时频域,通过Attention提取心电信号的时频域全局相关依赖关系,将时域与时频域特征融合对5种类型心电信号进行分类。在MIT-BIH数据集上验证了模型的有效性,所提模型对5种类型心电信号的平均分类准确率、精准率、召回率、灵敏度以及F1_Score分别为99.72%、98.55%、99.46%、99.90%以及99.00%。与已有先进方法对比,验证了所提模型具有先进的性能表现。 展开更多
关键词 心电图(ECG)分类 卷积神经网络(CNN) 注意力机制 短时傅里叶变换(STFT) 时域-时频域特征融合
下载PDF
结合密集神经网络与长短时记忆模型的中文识别 被引量:3
19
作者 张艺玮 赵一嘉 +1 位作者 王馨悦 董兰芳 《计算机系统应用》 2018年第11期35-41,共7页
文本图像识别是计算机视觉领域一项重要任务,而其中的中文识别因种类繁多、结构复杂以及类间相近等特点很具挑战性.为改善这一问题,使用文本行端到端的识别模型.首次提出利用密集卷积神经网络(DenseNet)提取文本图像底层特征,同时避免... 文本图像识别是计算机视觉领域一项重要任务,而其中的中文识别因种类繁多、结构复杂以及类间相近等特点很具挑战性.为改善这一问题,使用文本行端到端的识别模型.首次提出利用密集卷积神经网络(DenseNet)提取文本图像底层特征,同时避免手工设计、统计图像特征的繁琐;将整行图像特征直接送入双向长短时记忆模型(BLSTM)进行局部相关性分析,减少字符定位分割这一步骤;最后采用时域连接模型(CTC)解码获得识别的文本信息.实验表明所提出的模型可以高效的进行图像文本行的识别,并对图像的多种形变具有较好的鲁棒性. 展开更多
关键词 中文识别 端到端 密集卷积神经网络 双向长短时记忆模型 时域连接模型
下载PDF
基于时域全卷积网络的语音增强 被引量:4
20
作者 李文志 屈晓旭 《舰船科学技术》 北大核心 2022年第15期139-144,共6页
目前基于深度学习的语音增强方法一般是通过在频域中对语音信号幅度谱进行处理,相位信息受到损失。针对这一问题,提出一种基于时域全卷积网络的语音增强方法。该方法通过设计全卷积神经网络在时域中对语音信号进行处理,保留了信号的原... 目前基于深度学习的语音增强方法一般是通过在频域中对语音信号幅度谱进行处理,相位信息受到损失。针对这一问题,提出一种基于时域全卷积网络的语音增强方法。该方法通过设计全卷积神经网络在时域中对语音信号进行处理,保留了信号的原始相位信息,以含噪语音和纯净语音作为网络的输入和输出,建立时域上的非线性关系,实现以端到端的方式进行语音增强。通过仿真实验表明,提出的基于时域全卷积神络语音增强方法在低信噪比的情况下,能够有效地提高语音质量。 展开更多
关键词 语音增强 时域信号 深度学习 卷积神经网络 卷积网络
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部