针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。...针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。仿真结果表明,相比基于CNN的算法,所提算法在高信噪比下针对两个数据集的识别率分别提升7%和18%;此外,相比于基于特征提取的传统识别算法,其高阶调制识别性能平均提升3 d B。展开更多
文摘针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。仿真结果表明,相比基于CNN的算法,所提算法在高信噪比下针对两个数据集的识别率分别提升7%和18%;此外,相比于基于特征提取的传统识别算法,其高阶调制识别性能平均提升3 d B。