期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于TCN和迁移学习的混凝土坝变形预测方法 被引量:1
1
作者 张健飞 叶亮 王磊 《人民黄河》 CAS 北大核心 2024年第4期142-147,共6页
混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的... 混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的测点为源域,以缺少数据的测点为目标域,将在源域上训练好的TCN模型的结构和参数迁移到目标域模型中,固定其中的冻结层参数,利用目标域中的数据对目标域模型可调层参数进行调整。同时,采用动态时间规整选择与目标域数据序列相似度最高的监测数据作为最佳源域数据,提升迁移学习效果。工程实例分析表明:迁移学习后的目标域模型的均方根误差和平均绝对误差与利用足量数据训练的TCN模型的预测误差相比,差异仅分别为1.73%和8.09%,小数据量情况下TCN预测模型的精度得到了提高。 展开更多
关键词 时域卷积网络 迁移学习 动态时间规整 变形预测
下载PDF
基于优化变分模态分解的大坝变形组合预测模型:以丰满水电站为例
2
作者 叶玉龙 张研 +1 位作者 袁普龙 王峻峰 《科学技术与工程》 北大核心 2024年第26期11401-11408,共8页
大坝的变形通常受到多种因素的影响,监测数据表现出一定的非平稳性和随机性,为提高大坝变形预测的精度,提出了基于优化变分模态分解的大坝变形组合预测模型。该模型首先采用粒子群优化算法(particle swarm optimization,PSO)寻找变分模... 大坝的变形通常受到多种因素的影响,监测数据表现出一定的非平稳性和随机性,为提高大坝变形预测的精度,提出了基于优化变分模态分解的大坝变形组合预测模型。该模型首先采用粒子群优化算法(particle swarm optimization,PSO)寻找变分模态分解(variational mode decomposition,VMD)的最优超参数,然后将大坝变形分解为趋势项、周期项和随机项分量。针对分解后各分量的时序特点,采用时域卷积网络(temporal convolutional network,TCN)和长短时记忆网络(long short-term memory,LSTM)进行组合预测,对各分量预测值重构加成得到最终预测值。以实际工程数据为例,采用平均绝对误差(mean absolute error,MAE),均方误差(mean square error,MSE)和平均绝对百分比误差(mean absolute percentage error,MAPE)等指标对模型量化评估,并与单一的预测模型进行比较。结果表明:本文提出的基于优化变分模态分解的大坝变形组合预测模型精度更高,可以有效提取大坝变形数据中隐含的信息特征,降低大坝变形时序数据的非平稳性,具有较高推广应用价值,为精准预测大坝变形提供了借鉴和指导。 展开更多
关键词 大坝变形预测 变分模态分解 粒子群算法 时域卷积网络 长短时记忆网络 组合模型
下载PDF
基于改进VarifocalNet的高精度目标检测算法 被引量:2
3
作者 姬张建 张明 王子龙 《计算机应用》 CSCD 北大核心 2023年第7期2147-2154,共8页
针对通用目标检测场景下,现有单阶段无锚检测器识别精度低、识别困难等问题,提出一种基于改进变焦网络VFNet(VarifocalNet)的高精度目标检测算法。首先,利用循环层聚合网络(RLANet)替换VFNet用于特征提取的主干网络ResNet,循环残差连接... 针对通用目标检测场景下,现有单阶段无锚检测器识别精度低、识别困难等问题,提出一种基于改进变焦网络VFNet(VarifocalNet)的高精度目标检测算法。首先,利用循环层聚合网络(RLANet)替换VFNet用于特征提取的主干网络ResNet,循环残差连接操作将前层特征汇入后续网络层中提升特征的表征能力;其次,通过带有特征对齐卷积操作的特征金字塔网络(FPN)替换原始的特征融合网络,利用可变形卷积操作在FPN上下层融合过程中实现特征对齐并优化特征表征能力;最后,使用聚焦-全局蒸馏(FGD)算法进一步提升小规模算法的检测性能。在COCO(Common Objects in Context)2017数据集上进行的评估实验结果表明,在相同训练条件下,改进后的以RLANet-50为主干的算法的均值平均精度(mAP)可以达到45.9%,与VFNet算法相比提升了4.3个百分点,而改进后的算法参数量为36.67×10^(6),与VFNet相比仅高了4×10^(6)。可见,改进后的VFNet算法在提升检测精度的同时稍微增加了参数量,说明该算法可以满足目标检测的轻量化及高精度需求。 展开更多
关键词 循环层聚合网络 目标检测 可变形卷积 特征对齐 特征金字塔网络 知识蒸馏
下载PDF
基于深度学习的两阶段多假设视频压缩感知重构算法 被引量:3
4
作者 杨春玲 凌茜 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期88-99,共12页
传统视频压缩感知重构算法重构时延过长,新发展的基于神经网络的视频压缩感知重构算法虽解决了高耗时的问题但未能充分利用视频的时空相关性,重构质量较差。为了解决上述问题,文中提出了基于深度学习的两阶段多假设视频压缩感知重构算法... 传统视频压缩感知重构算法重构时延过长,新发展的基于神经网络的视频压缩感知重构算法虽解决了高耗时的问题但未能充分利用视频的时空相关性,重构质量较差。为了解决上述问题,文中提出了基于深度学习的两阶段多假设视频压缩感知重构算法(2sMHNet)。首先,采用时域可变形卷积对齐网络实现基于像素的深度学习多假设预测,在避免了块效应的同时通过自适应参数学习提高了假设集的匹配准确性与权重的计算精度,充分地挖掘了时间相关性得到高质量的预测帧;然后,构建残差重构模块以实现预测帧残差的观测域重构,进一步提升重构质量;最后,为了充分利用图像组帧间相关性,提出了两阶段串行式重构模式,在第一阶段利用细节信息丰富的关键帧提升非关键帧重构质量,在第二阶段利用相关性更强的相邻帧再次进行运动补偿重构,适应运动快且复杂的序列。仿真结果证明,2sMHNet相比于目前优秀的视频压缩感知重构算法具有更加优良的重构性能。 展开更多
关键词 视频压缩感知重构算法 深度学习 时域可变形卷积对齐网络 重构性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部