Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficie...Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficient and effective intra-particle diffusivity) for toluene and p-dichlorobenzene on silica gel adsorbent in the subcritical and supercritical CO2. An apparatus based on supercritical fluid chromatography was established and the experiments were performed at temperatures of 298.15-318.15 K and pressures of 7.5-17.8 MPa. The two methods have been compared. The results show that for the systems studied here the moment method can give reasonable values for both adsorption equilibrium constant and mass transfer properties, but the time-domain analysis only can obtain the adsorption equilibrium constant. The dependence of adsorption equilibrium constant and mass transfer properties on temperature and pressure was investigated.展开更多
基金Supported by research grant 02KJB530002 from Jiangsu Provincial Committee of Education.
文摘Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficient and effective intra-particle diffusivity) for toluene and p-dichlorobenzene on silica gel adsorbent in the subcritical and supercritical CO2. An apparatus based on supercritical fluid chromatography was established and the experiments were performed at temperatures of 298.15-318.15 K and pressures of 7.5-17.8 MPa. The two methods have been compared. The results show that for the systems studied here the moment method can give reasonable values for both adsorption equilibrium constant and mass transfer properties, but the time-domain analysis only can obtain the adsorption equilibrium constant. The dependence of adsorption equilibrium constant and mass transfer properties on temperature and pressure was investigated.