期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合SE与BiSRU的Unet的音乐源分离方法
被引量:
5
1
作者
张瑞峰
白金桐
+1 位作者
关欣
李锵
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第11期106-115,134,共11页
音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离...
音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离模型的表示能力和计算效率,在目前时域分离性能最优的Demucs模型基础上进行改进,提出了一种端对端网络Unet-SE-BiSRU。该模型在广义编码层和解码层中引入了注意力机制,采用挤压-激励块(SE)根据待分离音频的种类有选择地提取特征;在一维卷积后增加组归一化,以应对在学习过程中可能出现的梯度爆炸或梯度消失问题;将双向长短期记忆网络改进为双向简单循环单元(BiSRU),进一步提高了学习的并行性,且降低了模型参数量。实验结果表明,改进后的网络模型的信噪比指标提升了0.34 dB,在目前检索到的文献的时域端对端方法中取得了最好的分离性能,并且训练时间缩短为源模型的2/5。
展开更多
关键词
音乐源
分离
U型网络
时域端到端分离模型
简单循环单元
挤压-激励块
组归一化
下载PDF
职称材料
题名
结合SE与BiSRU的Unet的音乐源分离方法
被引量:
5
1
作者
张瑞峰
白金桐
关欣
李锵
机构
天津大学微电子学院
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第11期106-115,134,共11页
基金
国家自然科学基金资助项目(61471263)
天津市自然科学基金资助项目(16JCZDJC31100)。
文摘
音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离模型的表示能力和计算效率,在目前时域分离性能最优的Demucs模型基础上进行改进,提出了一种端对端网络Unet-SE-BiSRU。该模型在广义编码层和解码层中引入了注意力机制,采用挤压-激励块(SE)根据待分离音频的种类有选择地提取特征;在一维卷积后增加组归一化,以应对在学习过程中可能出现的梯度爆炸或梯度消失问题;将双向长短期记忆网络改进为双向简单循环单元(BiSRU),进一步提高了学习的并行性,且降低了模型参数量。实验结果表明,改进后的网络模型的信噪比指标提升了0.34 dB,在目前检索到的文献的时域端对端方法中取得了最好的分离性能,并且训练时间缩短为源模型的2/5。
关键词
音乐源
分离
U型网络
时域端到端分离模型
简单循环单元
挤压-激励块
组归一化
Keywords
music source separation
Unet
time domain end-to-end separation model
simple recurrent unit
squeeze-and-excitation
group normalization
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合SE与BiSRU的Unet的音乐源分离方法
张瑞峰
白金桐
关欣
李锵
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部