期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于矩阵束法的时域航空电磁响应数据的重构 被引量:6
1
作者 郑凯 王绪本 +1 位作者 陈斌 吕东伟 《物探与化探》 CAS CSCD 北大核心 2010年第6期737-740,749,共5页
为快速处理时域航空电磁响应数据,可将数据从时域变换到τ域,并提取数据的极点和留数信息,它们是与目标地质体的几何属性和物性相关的参数。基于矩阵束法,将感应电动势理论响应数据表示成矩阵形式,并分解构造矩阵束,通过奇异值分解和最... 为快速处理时域航空电磁响应数据,可将数据从时域变换到τ域,并提取数据的极点和留数信息,它们是与目标地质体的几何属性和物性相关的参数。基于矩阵束法,将感应电动势理论响应数据表示成矩阵形式,并分解构造矩阵束,通过奇异值分解和最小二乘法来进行参数估计。进行了正演模拟,重构理论响应数据和去噪能力研究。结果表明,有限个极点及其留数能够较好体现瞬态响应的主要特征,并对随机干扰有一定的抑制作用,这为快速处理解释时域航空数据提供了一种实用方法。 展开更多
关键词 时域航空电磁 矩阵束 重构 去噪
下载PDF
改进的EEMD算法在时域航空电磁信号降噪中的研究 被引量:10
2
作者 张婷 李双田 《信号处理》 CSCD 北大核心 2016年第7期771-778,共8页
常规降噪方法在应用于时域航空电磁信号降噪时需根据噪声情况人为进行参数调整,自适应性较差。总体经验模态分解(EEMD)算法对非线性、非平稳信号处理具有良好的自适应特性,传统的EEMD算法进行噪声抑制是将高频本征模态分量滤除,将低频... 常规降噪方法在应用于时域航空电磁信号降噪时需根据噪声情况人为进行参数调整,自适应性较差。总体经验模态分解(EEMD)算法对非线性、非平稳信号处理具有良好的自适应特性,传统的EEMD算法进行噪声抑制是将高频本征模态分量滤除,将低频分量重构得到降噪信号,这种方法易失掉高频分量中的有效信号。本文提出一种改进的EEMD降噪算法,应用于时域航空电磁信号的处理。该方法结合时域航空电磁信号的衰减特性,将信号EEMD分解后得到本征模态分量,其中包含信号和噪声,经Savitzky-Golay平滑滤波,再将高频部分进行阈值去噪,最后得到干净的本征模态分量进行重构。实验结果表明在输入信号信噪比小于等于15 d B的情况下,输出信噪比能够提高12 d B左右,在抑制噪声的同时保留了更多有效信息。 展开更多
关键词 时域航空电磁信号 总体经验模态分解 Savitzky-Golay滤波 阈值去噪
下载PDF
基于多元线性回归的HTEM三维异常体电导率-深度识别 被引量:1
3
作者 嵇艳鞠 冯雪 +3 位作者 于明媚 徐江 呼彦朴 关珊珊 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2014年第5期1687-1694,共8页
针对时域航空电磁飞行测量数据量大、电导率-深度成像计算时间长,以及三维反演困难等问题,笔者采用三维时域有限差分数值计算方法,计算了多组不同电导率、不同深度的三维异常体电磁响应;通过分析三维异常体剖面曲线的属性特征,提取了7... 针对时域航空电磁飞行测量数据量大、电导率-深度成像计算时间长,以及三维反演困难等问题,笔者采用三维时域有限差分数值计算方法,计算了多组不同电导率、不同深度的三维异常体电磁响应;通过分析三维异常体剖面曲线的属性特征,提取了7个特征属性参数;基于多元逐步回归法建立了三维异常体的电导率、深度回归方程;通过对方程进行离群值剔除和共线性诊断、显著性检验,最终得到了电导率、深度最优回归方程。对回归方程模型分析和精度分析的结果表明,取样时间为0.2~1.5ms时:电导率模型的相对误差小于11.95%,残差平方和为4 653.724;深度模型的相对误差小于13.19%,残差平方和为10 873.645。因此,采用多元逐步回归法建立三维异常体电导率和深度方程是完全可行的,是一种有效、准确、快速的识别方法,为野外航空电磁飞行测量时的海量数据异常快速检测和识别奠定了基础。 展开更多
关键词 航空时域电磁 三维 多元线性回归 电导率 深度
下载PDF
Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys 被引量:2
4
作者 黄威 贲放 +5 位作者 殷长春 孟庆敏 李文杰 廖桂香 吴珊 西永在 《Applied Geophysics》 SCIE CSCD 2017年第3期431-440,462,共11页
Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotrop... Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM. 展开更多
关键词 Three-dimensional time-domain airborne electromagnetic arbitrary anisotropy vector finite element
下载PDF
Airborne electromagnetic data denoising based on dictionary learning 被引量:6
5
作者 Xue Shu-yang Yin Chang-chun +5 位作者 Su Yang Liu Yun-he Wang Yong Liu Cai-hua Xiong Bin Sun Huai-feng 《Applied Geophysics》 SCIE CSCD 2020年第2期306-313,317,共9页
Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising met... Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance. 展开更多
关键词 Time-domain AEM data processing DENOISING dictionary learning sparse representation
下载PDF
Fransdimensional Bayesian inversion of timedomain airborne EM data 被引量:1
6
作者 Gao Zong-Hui Yin Chang-Chun +3 位作者 Qi Yan-Fu Zhang BO Ren Xiu-Yan Lu Yong-Chao 《Applied Geophysics》 SCIE CSCD 2018年第2期318-331,365,共15页
To reduce the dependence of EM inversion on the choice of initial model and to obtain the global minimum, we apply transdimensional Bayesian inversion to time-domain airborne electromagnetic data. The transdimensional... To reduce the dependence of EM inversion on the choice of initial model and to obtain the global minimum, we apply transdimensional Bayesian inversion to time-domain airborne electromagnetic data. The transdimensional Bayesian inversion uses the Monte Carlo method to search the model space and yields models that simultaneously satisfy the acceptance probability and data fitting requirements. Finally, we obtain the probability distribution and uncertainty of the model parameters as well as the maximum probability. Because it is difficult to know the height of the transmitting source during flight, we consider a fixed and a variable flight height. Furthermore, we introduce weights into the prior probability density function of the resistivity and adjust the constraint strength in the inversion model by changing the weighing coefficients. This effectively solves the problem of unsatisfactory inversion results in the middle high-resistivity layer. We validate the proposed method by inverting synthetic data with 3% Gaussian noise and field survey data. 展开更多
关键词 Time-domain airborne EM Bayesian inversion WEIGHING DECONVOLUTION
下载PDF
3D parallel inversion of time-domain airborne EM data 被引量:2
7
作者 Liu Yun-He Yin Chang-Chun +1 位作者 Ren Xiu-Yan Qiu Chang-Kai 《Applied Geophysics》 SCIE CSCD 2016年第4期701-711,740,共12页
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is perf... To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical. 展开更多
关键词 airborne EM time domain three-dimensional inversion FOOTPRINT parallel computing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部