Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the tr...Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.展开更多
A new kind of organic-inorganic hybrid HfO2/SiO2 sol-gel material with a large thermo-optic coefficient and a wide linear tunable temperature range has been developed for fabrication of a long period waveguide grating...A new kind of organic-inorganic hybrid HfO2/SiO2 sol-gel material with a large thermo-optic coefficient and a wide linear tunable temperature range has been developed for fabrication of a long period waveguide grating (LPWG) filter, whose parameters were optimized and designed by using finite difference time domain (FDTD) simulations. The LPWG filter, a periodic rectangle-corrugated grating structure, was easily fabricated with soft-lithography technique. At a temperature range from 19~C to 70~C, the fabricated LPWG filter element demonstrated a high temperature sensitivity of about 6.5 nm/~C and a wide linear tunable temperature range of 51℃, so that it can be used as a precise thermometer. Our results are useful for the designs of LPWG filters for the implementation of a wide range of thermo-optic functions.展开更多
This paper proposes an optical device which can continuously change the polarization state of terahertz (THz) waves. The device consists of metal gate, anU-refleetlon coatings, liquid crystal and mirror. By changing...This paper proposes an optical device which can continuously change the polarization state of terahertz (THz) waves. The device consists of metal gate, anU-refleetlon coatings, liquid crystal and mirror. By changing the refractive index of liquid crystal in the interface between the metal gate and the mirror, the phase difference between two beams with orthogonal polarization is varied and a continuous phase sliift is achieved. The phase shift of the device is calculated by using the finite difference time domain (FDTD) method, and the transmittance and reflectance are calculated by using the rigorous coupled wave analysis (RCWA) method. The results reveal that the structure can realize continuously tunable phase shift for THz wave at 1 THz.展开更多
A new scheme for fabricating a kind of flexible semiconductor micro-laser is put forward.And the optical properties of this kind of flexible semiconductor laser are investigated by the finite difference time domain(FD...A new scheme for fabricating a kind of flexible semiconductor micro-laser is put forward.And the optical properties of this kind of flexible semiconductor laser are investigated by the finite difference time domain(FDTD) method.The results show that the light should be localized by photonic crystals(PCs),and the interaction between light and gain medium should be enhanced,while the mode of laser should be modulated.These results indicate that the PCs could control the spontaneous emission,and lead the radiation emission to the needed frequency.展开更多
基金Project(61275174)supported by the National Natural Science Foundations of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China
文摘Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.
基金supported by the Natural Science Foundation of Guangdong Province,China (Grant Nos. 8251063101000007,10151063101000009 and 9451063101002082)the Scientific & Technological Plan of Guangdong Province (Grant Nos. 2008B010200004,2010B010600030 and 2009B011100003)+4 种基金the National Natural Science Foundation of China (Grant Nos. 61078046 and 10904042)the Key Project of Chinese Ministry of Education (Grant No. 210157)the Scientific & Technological Project of Education Department of Hubei Province (Grant No. D20101104)the Fundamental Research Funds for the Central Universities (Grant No. HUST 2010MS069)Program for New Century Excellent Talents in University,China (Grant No. 07-0319)
文摘A new kind of organic-inorganic hybrid HfO2/SiO2 sol-gel material with a large thermo-optic coefficient and a wide linear tunable temperature range has been developed for fabrication of a long period waveguide grating (LPWG) filter, whose parameters were optimized and designed by using finite difference time domain (FDTD) simulations. The LPWG filter, a periodic rectangle-corrugated grating structure, was easily fabricated with soft-lithography technique. At a temperature range from 19~C to 70~C, the fabricated LPWG filter element demonstrated a high temperature sensitivity of about 6.5 nm/~C and a wide linear tunable temperature range of 51℃, so that it can be used as a precise thermometer. Our results are useful for the designs of LPWG filters for the implementation of a wide range of thermo-optic functions.
基金supported by the National Key Basic Research Program of China(No.2007CB310403)
文摘This paper proposes an optical device which can continuously change the polarization state of terahertz (THz) waves. The device consists of metal gate, anU-refleetlon coatings, liquid crystal and mirror. By changing the refractive index of liquid crystal in the interface between the metal gate and the mirror, the phase difference between two beams with orthogonal polarization is varied and a continuous phase sliift is achieved. The phase shift of the device is calculated by using the finite difference time domain (FDTD) method, and the transmittance and reflectance are calculated by using the rigorous coupled wave analysis (RCWA) method. The results reveal that the structure can realize continuously tunable phase shift for THz wave at 1 THz.
基金supported by the National Natural Science Foundation of China (Nos.60768001 and 60808019)the Natural Science Foundation of Jiangxi Province (No. 2010gzw0045)
文摘A new scheme for fabricating a kind of flexible semiconductor micro-laser is put forward.And the optical properties of this kind of flexible semiconductor laser are investigated by the finite difference time domain(FDTD) method.The results show that the light should be localized by photonic crystals(PCs),and the interaction between light and gain medium should be enhanced,while the mode of laser should be modulated.These results indicate that the PCs could control the spontaneous emission,and lead the radiation emission to the needed frequency.