Geometrical light trapping is a simple and prom- ising strategy to largely improve the optical absorption and efficiency of solar cell. Nonetheless, implementation of geo- metrical light trapping in organic photovolta...Geometrical light trapping is a simple and prom- ising strategy to largely improve the optical absorption and efficiency of solar cell. Nonetheless, implementation of geo- metrical light trapping in organic photovoltaic is challenging due to the fact that uniform organic active layer can rarely be achieved on textured substrate. In this work, squarely ordered nanobowl array (SONA) is reported for the first time and [6,6]- phenyl-C6rbutyric acid methyl ester (PCBM):poly(3-hexyl- thiophene) (P3HT)-based organic photovoltaic (OPV) device on SONA demonstrated over 28 % enhancement in power conversion efficiency over the planar counterpart. Interestingly, finite-difference time-domain (FDTD) optical simulation revealed that the superior light trapping by SONA originated from optical concentrator effect by nanobowl. Furthermore, aiming at low-cost, solution processible, and resource sus- tainable flexible solar cells, we employed Ag nanowires for the top transparent conducting electrode. This work not only revealed the in-depth understanding of light trapping by nanobowl optical concentrator, but also demonstrated the fea- sibility of implementing geometrical light trapping in OPV.展开更多
We demonstrate a novel SOI-based photonic crystal(PC) double-heterostructure slot waveguide microcavity constructed by cascading three PC slot waveguides with different slot widths,and simulate the luminescence enha...We demonstrate a novel SOI-based photonic crystal(PC) double-heterostructure slot waveguide microcavity constructed by cascading three PC slot waveguides with different slot widths,and simulate the luminescence enhancement of sol-gel Er-doped SiO2 filled in the microcavity by finite-difference time-domain(FDTD) method.The calculated results indicate that a unique sharp resonant peak dominates in the spectrum at the expected telecommunication wavelength of 1.5509 mm,with very high normalized peak intensity of ~108.The electromagnetic field of the resonant mode exhibits the strongest in the microcavity,and decays rapidly to zero along both sides,which means that the resonant mode field is well confined in the microcavity.The simulation results fully verify the enhancement of luminescence by PC double-heterostructure slot waveguide microcavity theoretically,which is a promising way to realize the high-efficiency luminescence of Si-based materials.展开更多
基金supported by the HK-RGCGeneral Research Funds(HKUST 605710,604809,612111,612113)partially supported by ITS/117/13 from Hong Kong Innovation Technology Commission
文摘Geometrical light trapping is a simple and prom- ising strategy to largely improve the optical absorption and efficiency of solar cell. Nonetheless, implementation of geo- metrical light trapping in organic photovoltaic is challenging due to the fact that uniform organic active layer can rarely be achieved on textured substrate. In this work, squarely ordered nanobowl array (SONA) is reported for the first time and [6,6]- phenyl-C6rbutyric acid methyl ester (PCBM):poly(3-hexyl- thiophene) (P3HT)-based organic photovoltaic (OPV) device on SONA demonstrated over 28 % enhancement in power conversion efficiency over the planar counterpart. Interestingly, finite-difference time-domain (FDTD) optical simulation revealed that the superior light trapping by SONA originated from optical concentrator effect by nanobowl. Furthermore, aiming at low-cost, solution processible, and resource sus- tainable flexible solar cells, we employed Ag nanowires for the top transparent conducting electrode. This work not only revealed the in-depth understanding of light trapping by nanobowl optical concentrator, but also demonstrated the fea- sibility of implementing geometrical light trapping in OPV.
基金supported by the National Key Basic Research Special Fund of China (No.2007CB613404)the National High Technology,Research and Development Program of China (No.2011AA010303)the National Natural Science Foundation of China (Nos.61090390,60837001,60977045,60877014 and 60776057)
文摘We demonstrate a novel SOI-based photonic crystal(PC) double-heterostructure slot waveguide microcavity constructed by cascading three PC slot waveguides with different slot widths,and simulate the luminescence enhancement of sol-gel Er-doped SiO2 filled in the microcavity by finite-difference time-domain(FDTD) method.The calculated results indicate that a unique sharp resonant peak dominates in the spectrum at the expected telecommunication wavelength of 1.5509 mm,with very high normalized peak intensity of ~108.The electromagnetic field of the resonant mode exhibits the strongest in the microcavity,and decays rapidly to zero along both sides,which means that the resonant mode field is well confined in the microcavity.The simulation results fully verify the enhancement of luminescence by PC double-heterostructure slot waveguide microcavity theoretically,which is a promising way to realize the high-efficiency luminescence of Si-based materials.