We theoretically investigate the evolutions of two-dimensional, third-order, nonlinear photon echo rephasing spectra with population time by using an exact numerical path integral method. It is shown that for the same...We theoretically investigate the evolutions of two-dimensional, third-order, nonlinear photon echo rephasing spectra with population time by using an exact numerical path integral method. It is shown that for the same system, the coherence time and relaxation time of excitonic states are short, however, if the couplings of electronic and intra-pigment vibrational modes are considered, the coherence time and relaxation time of this vibronic states are greatly extended. It means that the couplings between electronic and vibrational modes play important roles in keeping long-lived coherence in light-harvesting complexes. Particularly, by using the method we can fix the transition path of the energy transfer in bio-molecular systems.展开更多
We study the effect of time-periodic coupling strength on the spiking coherence of Newman-Watts networks of Hodgkin-Huxley(HH) neurons with non-Gaussian noise.It is found that the spiking can exhibit coherence resonan...We study the effect of time-periodic coupling strength on the spiking coherence of Newman-Watts networks of Hodgkin-Huxley(HH) neurons with non-Gaussian noise.It is found that the spiking can exhibit coherence resonance(CR) when the extent of deviation of non-Gaussian noise from Gaussian noise and the amplitude of the coupling strength are varied.In particular,coherence bi-resonance(CBR) is observed when the frequency of the coupling strength is varied,and the CBR is always observed when the frequency is equal to,or a multiple of,the spiking period,manifesting as the locking between the frequencies of the spiking and the coupling strength.The results show that a time-periodic coupling strength may play a more constructive and efficient role in enhancing the spiking coherence of the neuronal networks than a constant coupling strength.These findings provide insight into the role of time-periodic coupling strength for enhancing the time precision of information processing in neuronal networks.展开更多
基金This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No.LY13A040006), and the K. C. Wong Magna Foundation in Ningbo University.
文摘We theoretically investigate the evolutions of two-dimensional, third-order, nonlinear photon echo rephasing spectra with population time by using an exact numerical path integral method. It is shown that for the same system, the coherence time and relaxation time of excitonic states are short, however, if the couplings of electronic and intra-pigment vibrational modes are considered, the coherence time and relaxation time of this vibronic states are greatly extended. It means that the couplings between electronic and vibrational modes play important roles in keeping long-lived coherence in light-harvesting complexes. Particularly, by using the method we can fix the transition path of the energy transfer in bio-molecular systems.
基金supported by the Natural Science Foundation of Shandong Province of China (ZR2009AM016)
文摘We study the effect of time-periodic coupling strength on the spiking coherence of Newman-Watts networks of Hodgkin-Huxley(HH) neurons with non-Gaussian noise.It is found that the spiking can exhibit coherence resonance(CR) when the extent of deviation of non-Gaussian noise from Gaussian noise and the amplitude of the coupling strength are varied.In particular,coherence bi-resonance(CBR) is observed when the frequency of the coupling strength is varied,and the CBR is always observed when the frequency is equal to,or a multiple of,the spiking period,manifesting as the locking between the frequencies of the spiking and the coupling strength.The results show that a time-periodic coupling strength may play a more constructive and efficient role in enhancing the spiking coherence of the neuronal networks than a constant coupling strength.These findings provide insight into the role of time-periodic coupling strength for enhancing the time precision of information processing in neuronal networks.