期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双侧空间窗的异常检测方法
1
作者 张灿 蔡俊 《计算机科学与应用》 2019年第1期19-27,共9页
针对现有异常检测方法难以解释异常属性的问题,本文提出基于双侧空间窗的异常检测方法。首先,在前景检测的基础上,本文对场景边界区域进行双侧空间窗采样,提取双侧空间窗特征;随后,为了提取异常事件的速度属性、相关性属性、时间差属性... 针对现有异常检测方法难以解释异常属性的问题,本文提出基于双侧空间窗的异常检测方法。首先,在前景检测的基础上,本文对场景边界区域进行双侧空间窗采样,提取双侧空间窗特征;随后,为了提取异常事件的速度属性、相关性属性、时间差属性的提取,本文分析了双侧空间窗的时序互相关理论和实际特性,实现了异常细分属性的描述;最后为了进一步描述目标类别属性,本文使用了基于快速傅里叶变换的外观特征,利用最大间隔思想训练异常检测模型。在真实场景BEHAVE数据库的实验中,可以看出AP和AUC评价指标超出现有对比方法,而且还能在没有先验知识指导的情况下,自动识别出监控场景出入口的位置。 展开更多
关键词 异常检测 双侧空间窗 时序互相关 语境发现
下载PDF
Temporal-spatial cross-correlation analysis of non-stationary near-surface wind speed time series 被引量:3
2
作者 ZENG Ming LI Jing-hai +1 位作者 MENG Qing-hao ZHANG Xiao-nei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期692-698,共7页
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se... Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly. 展开更多
关键词 temporal-spatial cross-correlation near-surface wind speed time series detrended cross-correlation analysis (DCCA) cross-correlation coefficient Pearson coefficient cross-correlation function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部