Detecting traffic anomalies is essential for diagnosing attacks. HighSp eed Backbone Net works (HSBN) require Traffic Anomaly Detection Systems (TADS) which are accurate (high detec tion and low false positive ra...Detecting traffic anomalies is essential for diagnosing attacks. HighSp eed Backbone Net works (HSBN) require Traffic Anomaly Detection Systems (TADS) which are accurate (high detec tion and low false positive rates) and efficient. The proposed approach utilizes entropy as traffic distributions metric over some traffic dimensions. An efficient algorithm, having low computational and space complexity, is used to estimate entro py. Entropy values over all dimensions are展开更多
A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet...A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.展开更多
Forecasting exchange rate is undoubtedly an attractive and challenging issue that has been of interest in different domains for many years. The singular spectrum analysis (SSA) technique has been used as a promising...Forecasting exchange rate is undoubtedly an attractive and challenging issue that has been of interest in different domains for many years. The singular spectrum analysis (SSA) technique has been used as a promising technique for time series forecasting including exchange rate series. The SSA technique is based upon two main choices: Window length, L, and the number of singular values, r. These values are very important for the reconstruction stage and forecasting purposes. Here the authors consider an optimum version of the SSA technique for forecasting exchange rates. The forecasting performances of the SSA technique for one-step-ahead forecast of six exchange rate series are used to find the best L and r.展开更多
基金supported by the National High-Tech Research and Development Plan of China under Grant No.2011AA010702
文摘Detecting traffic anomalies is essential for diagnosing attacks. HighSp eed Backbone Net works (HSBN) require Traffic Anomaly Detection Systems (TADS) which are accurate (high detec tion and low false positive rates) and efficient. The proposed approach utilizes entropy as traffic distributions metric over some traffic dimensions. An efficient algorithm, having low computational and space complexity, is used to estimate entro py. Entropy values over all dimensions are
基金Projects(60634020, 60904077, 60874069) supported by the National Natural Science Foundation of ChinaProject(JC200903180555A) supported by the Foundation Project of Shenzhen City Science and Technology Plan of China
文摘A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.
基金supported by a grant from Payame Noor University, Tehran-Iran
文摘Forecasting exchange rate is undoubtedly an attractive and challenging issue that has been of interest in different domains for many years. The singular spectrum analysis (SSA) technique has been used as a promising technique for time series forecasting including exchange rate series. The SSA technique is based upon two main choices: Window length, L, and the number of singular values, r. These values are very important for the reconstruction stage and forecasting purposes. Here the authors consider an optimum version of the SSA technique for forecasting exchange rates. The forecasting performances of the SSA technique for one-step-ahead forecast of six exchange rate series are used to find the best L and r.