Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the I...Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the Internet of Things contains many sorts of sensors, the measurement data collected by these sensors are multi-type data, sometimes contai- ning temporal series information. If we separately deal with different sorts of data, we will miss useful information. This paper proposes a method to dis- cover the correlation in multi-faceted data, which contains many types of data with temporal informa- tion, and our method can simultaneously deal with multi-faceted data. We transform high-dimensional multi-faeeted data into lower-dimensional data which is set as multivariate Gaussian Graphical Models, then mine the correlation in multi-faceted data by discover the structure of the multivariate Gausslan Graphical Models. With a real data set, we verifies our method, and the experiment demonstrates that the method we propose can correctly fred out the correlation among multi-faceted meas- urement data.展开更多
The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of determini...The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.展开更多
基金the Project"The Basic Research on Internet of Things Architecture"supported by National Key Basic Research Program of China(No.2011CB302704)supported by National Natural Science Foundation of China(No.60802034)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20070013026)Beijing Nova Program(No.2008B50)"New generation broadband wireless mobile communication network"Key Projects for Science and Technology Development(No.2011ZX03002-002-01)
文摘Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the Internet of Things contains many sorts of sensors, the measurement data collected by these sensors are multi-type data, sometimes contai- ning temporal series information. If we separately deal with different sorts of data, we will miss useful information. This paper proposes a method to dis- cover the correlation in multi-faceted data, which contains many types of data with temporal informa- tion, and our method can simultaneously deal with multi-faceted data. We transform high-dimensional multi-faeeted data into lower-dimensional data which is set as multivariate Gaussian Graphical Models, then mine the correlation in multi-faceted data by discover the structure of the multivariate Gausslan Graphical Models. With a real data set, we verifies our method, and the experiment demonstrates that the method we propose can correctly fred out the correlation among multi-faceted meas- urement data.
文摘The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.