期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进长期循环卷积神经网络的海上风电功率预测 被引量:29
1
作者 周勇良 余光正 +2 位作者 刘建锋 宋子恒 孔培 《电力系统自动化》 EI CSCD 北大核心 2021年第3期183-191,共9页
准确的风电功率预测对海上风电安全并网具有重要意义。不同于陆地,海上具有气象因素复杂、风电出力波动显著等特点,使得海上风电功率预测精度难以满足工程实际要求。针对以上问题,文中提出一种基于改进长期循环卷积神经网络(LRCN)的预... 准确的风电功率预测对海上风电安全并网具有重要意义。不同于陆地,海上具有气象因素复杂、风电出力波动显著等特点,使得海上风电功率预测精度难以满足工程实际要求。针对以上问题,文中提出一种基于改进长期循环卷积神经网络(LRCN)的预测模型,用于超短期海上风电功率预测。首先,采用改进LRCN进行初步功率预测,即构建多卷积通道分别提取不同层次变量的时序特征,并通过具有前瞻性的改进Adam优化器提升网络收敛效果。其次,利用摇摆窗算法与波动特征聚类识别预测时段的出力波动类型。再次,针对不同的波动类型建立对应的误差修正模型,并输入经Xgboost算法筛选出的强相关特征因子,实现误差修正。最后,采用实际海上风电场数据进行实验,其结果表明所提方法能够有效预测超短期海上风电功率,且预测精度高于多种传统预测模型。 展开更多
关键词 海上风电 改进长期循环卷积神经网络 时序特征挖掘 波动 误差修正
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部