We analyze for the first time the rules of breaking in an X-palindrome between human and chimpanzee. Results indicate that although the overall changes that occurred in the human X-palindrome are fewer than in the chi...We analyze for the first time the rules of breaking in an X-palindrome between human and chimpanzee. Results indicate that although the overall changes that occurred in the human X-palindrome are fewer than in the chimpanzee, mutations occurring between the left arm and right arm were nearly equivalent both in human and chimpanzee when compared with orangutan, which implies evolutionary synchronization. However, there are many more A/T→G/C changes than G/C→A/T in a single arm, which would lead to an increasing trend in GC content and suggest that the composition is not at equilibrium. In addition, it is remarkable to find that there are much more asymmetrical nucleotide changes between the two arms of the human palindrome than that of the chimpanzee palindrome, and these mutations are prone to occur between bases with similar chemical structures. The symmetry seems higher in the chimpanzee palindrome than in the human X-palindrome.展开更多
In the environment of customization, disturbances such as rush orders and material shortages often occur in the manufacturing system, so rescheduling is necessary for the manufacturing system. The rescheduling methodo...In the environment of customization, disturbances such as rush orders and material shortages often occur in the manufacturing system, so rescheduling is necessary for the manufacturing system. The rescheduling methodology should be able to dispose of the disturbance efficiently so as to keep production going smoothly. This aims researching flow shop rescheduling problem (FSRP) necessitated by rush orders. Disjunctive graph is employed to demonstrate the FSRP. For a flow shop processing n jobs, after the original schedule has been made, and z out of n jobs have been processed in the flow shop, x rush orders come, so the original n jobs together with x rush orders should be rescheduled immediately so that the rush orders would be processed in the shortest time and the original jobs could be processed subject to some optimized criteria. The weighted mean flow time of both original jobs and rush orders is used as objective function. The weight for rush orders is much bigger than that of the original jobs, so the rush orders should be processed early in the new schedule. The ant colony optimization (ACO) algorithm used to solve the rescheduling problem has a weakness in that the search may fall into a local optimum. Mutation operation is employed to enhance the ACO performance. Numerical experiments demonstrated that the proposed algorithm has high computation repeatability and efficiency.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20173023 and No.90203012) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20020730006).
文摘We analyze for the first time the rules of breaking in an X-palindrome between human and chimpanzee. Results indicate that although the overall changes that occurred in the human X-palindrome are fewer than in the chimpanzee, mutations occurring between the left arm and right arm were nearly equivalent both in human and chimpanzee when compared with orangutan, which implies evolutionary synchronization. However, there are many more A/T→G/C changes than G/C→A/T in a single arm, which would lead to an increasing trend in GC content and suggest that the composition is not at equilibrium. In addition, it is remarkable to find that there are much more asymmetrical nucleotide changes between the two arms of the human palindrome than that of the chimpanzee palindrome, and these mutations are prone to occur between bases with similar chemical structures. The symmetry seems higher in the chimpanzee palindrome than in the human X-palindrome.
文摘In the environment of customization, disturbances such as rush orders and material shortages often occur in the manufacturing system, so rescheduling is necessary for the manufacturing system. The rescheduling methodology should be able to dispose of the disturbance efficiently so as to keep production going smoothly. This aims researching flow shop rescheduling problem (FSRP) necessitated by rush orders. Disjunctive graph is employed to demonstrate the FSRP. For a flow shop processing n jobs, after the original schedule has been made, and z out of n jobs have been processed in the flow shop, x rush orders come, so the original n jobs together with x rush orders should be rescheduled immediately so that the rush orders would be processed in the shortest time and the original jobs could be processed subject to some optimized criteria. The weighted mean flow time of both original jobs and rush orders is used as objective function. The weight for rush orders is much bigger than that of the original jobs, so the rush orders should be processed early in the new schedule. The ant colony optimization (ACO) algorithm used to solve the rescheduling problem has a weakness in that the search may fall into a local optimum. Mutation operation is employed to enhance the ACO performance. Numerical experiments demonstrated that the proposed algorithm has high computation repeatability and efficiency.