期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
BLAC:注意力机制时序网络流量异常检测模型 被引量:2
1
作者 李婧 周师严 《现代电子技术》 2023年第4期91-96,共6页
入侵检测的难点之一是如何准确识别流量数据的异常特征。文中提出一个基于卷积神经网络(CNN)、双向长短期记忆网络(Bi-LSTM)和注意力(Attention)的时序流量异常检测模型,即BLAC。为提高BLAC模型的特征提取准确度,使用CNN提取流量数据中... 入侵检测的难点之一是如何准确识别流量数据的异常特征。文中提出一个基于卷积神经网络(CNN)、双向长短期记忆网络(Bi-LSTM)和注意力(Attention)的时序流量异常检测模型,即BLAC。为提高BLAC模型的特征提取准确度,使用CNN提取流量数据中的空间特征,利用Bi-LSTM提取流量数据的完整时间特征,解决Attention难以对复杂时间序列数据位置信息进行编码的问题。通过对Attention权重的可视化分析,推测出异常在窗口中发生的时间点。使用雅虎的Webscope S5数据集进行对比试验,结果表明,BLAC模型的性能优于其他SOTA模型,其中关键指标召回率高达98.69%,表示二分类精确度的F1得分达到97.73%。 展开更多
关键词 异常检测 BLAC模型 特征提取 注意力机制 卷积神经网络 时序网络流量 对比试验
下载PDF
Detecting Encrypted Botnet Traffic Using Spatial-Temporal Correlation 被引量:3
2
作者 Chen Wei Yu Le Yang Geng 《China Communications》 SCIE CSCD 2012年第10期49-59,共11页
In this paper, we to detect encrypted botnet propose a novel method traffic. During the traffic preprocessing stage, the proposed payload extraction method can identify a large amount of encrypted applications traffic... In this paper, we to detect encrypted botnet propose a novel method traffic. During the traffic preprocessing stage, the proposed payload extraction method can identify a large amount of encrypted applications traffic. It can filter out a large amount of non-malicious traffic, greatly in, roving the detection efficiency. A Sequential Probability Ratio Test (SPRT)-based method can find spatialtemporal correlations in suspicious botnet traffic and make an accurate judgment. Experimental resuks show that the false positive and false nega- tive rates can be controlled within a certain range. 展开更多
关键词 BOTNET encrypted traffic spatial-tenmporal correlation
下载PDF
Traffic An o ma ly De te ctio n in Backbone Networks Using C la s s ifica tio n o f M u Itid ime n s io n a I Time Series of Entropy
3
作者 Zheng Liming Zou Peng +1 位作者 Jia Yan Han Weihong 《China Communications》 SCIE CSCD 2012年第7期108-120,共13页
Detecting traffic anomalies is essential for diagnosing attacks. HighSp eed Backbone Net works (HSBN) require Traffic Anomaly Detection Systems (TADS) which are accurate (high detec tion and low false positive ra... Detecting traffic anomalies is essential for diagnosing attacks. HighSp eed Backbone Net works (HSBN) require Traffic Anomaly Detection Systems (TADS) which are accurate (high detec tion and low false positive rates) and efficient. The proposed approach utilizes entropy as traffic distributions metric over some traffic dimensions. An efficient algorithm, having low computational and space complexity, is used to estimate entro py. Entropy values over all dimensions are 展开更多
关键词 traffic anomaly detection ENTROPY classification correlation one class support vector machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部