期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于时间序列的大型核电厂设备异动态势感知系统设计
1
作者 高帆 李小辉 +2 位作者 郭莉侠 杨强 郭贞荣 《计算机测量与控制》 2024年第11期251-257,共7页
为了准确感知核电厂设备设备异动态势,防止负荷电压、负荷电流数值异常增大,设计基于时间序列的大型核电厂设备异动态势感知系统;在系统硬件设计上,完善设备数据自动处理模块、设备异动信号采集器、态势感知装置之间的实时连接关系;系... 为了准确感知核电厂设备设备异动态势,防止负荷电压、负荷电流数值异常增大,设计基于时间序列的大型核电厂设备异动态势感知系统;在系统硬件设计上,完善设备数据自动处理模块、设备异动信号采集器、态势感知装置之间的实时连接关系;系统软件设计上,构建时间序列模型,实现对核电厂设备异动数据的处理;选取核心异动态势指标,按照标量化处理流程,通过阈值方法实现对核电设备异动态势的感知,完成大型核电厂设备异动态势感知;实验结果表明,上述系统通过准确感知核电厂设备异动态势,将设备负荷电压、负荷电流数值控制在阈值之内,能够维护核电厂设备的稳定运行。 展开更多
关键词 时间序列 设备异动 态势感知 自动处理 时序趋势特征 态势指标 量化处理
下载PDF
Symbolic representation based on trend features for knowledge discovery in long time series 被引量:5
2
作者 Hong YIN Shu-qiang YANG +2 位作者 Xiao-qian ZHU Shao-dong MA Lu-min ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第9期744-758,共15页
The symbolic representation of time series has attracted much research interest recently. The high dimensionality typical of the data is challenging, especially as the time series becomes longer. The wide distribution... The symbolic representation of time series has attracted much research interest recently. The high dimensionality typical of the data is challenging, especially as the time series becomes longer. The wide distribution of sensors collecting more and more data exacerbates the problem. Representing a time series effectively is an essential task for decision-making activities such as classification, prediction, and knowledge discovery. In this paper, we propose a new symbolic representation method for long time series based on trend features, called trend feature symbolic approximation (TFSA). The method uses a two-step mechanism to segment long time series rapidly. Unlike some previous symbolic methods, it focuses on retaining most of the trend features and patterns of the original series. A time series is represented by trend symbols, which are also suitable for use in knowledge discovery, such as association rules mining. TFSA provides the lower bounding guarantee. Experimental results show that, compared with some previous methods, it not only has better segmentation efficiency and classification accuracy, but also is applicable for use in knowledge discovery from time series. 展开更多
关键词 Long time series SEGMENTATION Trend features SYMBOLIC Knowledge discovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部