期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于深度学习的异常行为识别方法
被引量:
9
1
作者
杨锐
罗兵
+1 位作者
郝叶林
常津津
《五邑大学学报(自然科学版)》
CAS
2018年第2期23-30,共8页
异常行为识别与检测在安防领域有广泛的应用前景,但现有的异常行为识别方法时序信息利用率低,准确率和处理速度还难以满足实际需要.本文采用三维密集连接深度网络结构对采集视频的时序和空间特征进行基于深度学习的建模,对打架、徘徊、...
异常行为识别与检测在安防领域有广泛的应用前景,但现有的异常行为识别方法时序信息利用率低,准确率和处理速度还难以满足实际需要.本文采用三维密集连接深度网络结构对采集视频的时序和空间特征进行基于深度学习的建模,对打架、徘徊、抢劫这三类异常行为以及正常行为类进行识别,采用多个可变时序深度的卷积核,并结合深度可分离卷积层重新设计了时序过渡层,更多地利用输入信号中的时序信息.模拟实验结果表明,本文提出的改进方法准确率达92.5%,进一步提高了模型的准确率和泛化性能.
展开更多
关键词
异常行为
动作识别
深度学习
时序过渡
下载PDF
职称材料
题名
一种基于深度学习的异常行为识别方法
被引量:
9
1
作者
杨锐
罗兵
郝叶林
常津津
机构
五邑大学信息工程学院
出处
《五邑大学学报(自然科学版)》
CAS
2018年第2期23-30,共8页
文摘
异常行为识别与检测在安防领域有广泛的应用前景,但现有的异常行为识别方法时序信息利用率低,准确率和处理速度还难以满足实际需要.本文采用三维密集连接深度网络结构对采集视频的时序和空间特征进行基于深度学习的建模,对打架、徘徊、抢劫这三类异常行为以及正常行为类进行识别,采用多个可变时序深度的卷积核,并结合深度可分离卷积层重新设计了时序过渡层,更多地利用输入信号中的时序信息.模拟实验结果表明,本文提出的改进方法准确率达92.5%,进一步提高了模型的准确率和泛化性能.
关键词
异常行为
动作识别
深度学习
时序过渡
Keywords
abnormal behavior
action recognition
deep learning
temporal transition
分类号
TP216.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于深度学习的异常行为识别方法
杨锐
罗兵
郝叶林
常津津
《五邑大学学报(自然科学版)》
CAS
2018
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部