Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series...Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.展开更多
Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp struc...Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp structures of wind speed have a self-similar characteristic. The lower limit of the self-similar scale range was 2 s. The upper limit is unexpectedly large at 27 rain. Data are collected from grassland, city, and lake areas. Although these data have different underlying surfaces, all of them clearly show a power law relation, with slight differences in their power exponents.展开更多
Singular spectrum analysis (SSA) is a technique that decomposes a time series into a set of components, such as, trend, harmonics, and residuals. Leaving out the residual components and adding up the others, the tim...Singular spectrum analysis (SSA) is a technique that decomposes a time series into a set of components, such as, trend, harmonics, and residuals. Leaving out the residual components and adding up the others, the time series can be smoothed. This procedure has been used to model Brazilian electricity consumption and flow series. The PAR(p), periodic autoregressive models, has been broadly used in modelling energy series in Brazil. This paper presents an approach of this decomposition method, by fitting the PAR(p), considering its multivariate version known as multivariate SSA (MSSA). The method was applied to a vector of two wind speed series recorded at two locations in the Brazilian Northeast region. The obtained results, when compared to the univariate decomposition of each series, were far superior, showing that the spatial correlation between the two series were considered by MSSA decomposition stage.展开更多
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
文摘Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.
基金supported by the National Natural Science Foundation of China (Grant No. 91215302)"One-Three-Five" Strategic Planning (wind power prediction) of the Institute of Atmospheric Physics, Chinese Academy of Sciences (CAS) (Grant No. Y267014601)the Strategic Project of Science and Technology of CAS (Grant No. XDA05040301)
文摘Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp structures of wind speed have a self-similar characteristic. The lower limit of the self-similar scale range was 2 s. The upper limit is unexpectedly large at 27 rain. Data are collected from grassland, city, and lake areas. Although these data have different underlying surfaces, all of them clearly show a power law relation, with slight differences in their power exponents.
文摘Singular spectrum analysis (SSA) is a technique that decomposes a time series into a set of components, such as, trend, harmonics, and residuals. Leaving out the residual components and adding up the others, the time series can be smoothed. This procedure has been used to model Brazilian electricity consumption and flow series. The PAR(p), periodic autoregressive models, has been broadly used in modelling energy series in Brazil. This paper presents an approach of this decomposition method, by fitting the PAR(p), considering its multivariate version known as multivariate SSA (MSSA). The method was applied to a vector of two wind speed series recorded at two locations in the Brazilian Northeast region. The obtained results, when compared to the univariate decomposition of each series, were far superior, showing that the spatial correlation between the two series were considered by MSSA decomposition stage.