针对延迟容忍网络现有社区内路由算法在选择中继节点未考虑节点间有序连接而高估通信路径可达性问题,提出一种基于连通时序效用的路由算法——RBCSU(Routing Based on Connected Sequence of Utility),该算法采用社区内节点间连通时序...针对延迟容忍网络现有社区内路由算法在选择中继节点未考虑节点间有序连接而高估通信路径可达性问题,提出一种基于连通时序效用的路由算法——RBCSU(Routing Based on Connected Sequence of Utility),该算法采用社区内节点间连通时序估计节点间通信路径状态,进而考虑节点可达率、时延度以及相似度计算节点效用值,并通过比较其效用值来选择出最优的中继节点转发消息.仿真结果表明,相比于Epidemic、PRoPHET和SimBet算法,该算法能够有效提高消息投递率、降低消息传输时延和网络开销.展开更多
A new approach of incremental placement approach is described.The obtained timing information drives an efficient net-based placement technique,which dynamically adapts the net weights during successive placement step...A new approach of incremental placement approach is described.The obtained timing information drives an efficient net-based placement technique,which dynamically adapts the net weights during successive placement steps.Several methods to combine timing optimization and congestion reducing together are proposed.Cells on critical paths are replaced according to timing and congestion constraints.Experimental results show that our approach can efficiently reduce cycle time and enhance route ability.The max path delay is reduced by 10% on an average afterincremental placement on wirelength-optimized circuits.And it achieves the same quality with a high speed up compared to timing driven detailed placement algorithm.展开更多
The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model,...The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.展开更多
A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mix...A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mixed-integer linear programming (MLP) problem in order to simultaneously place and size the sleep transistors optimally. Because of better circuit slack utilization, our experimental results show that the MLP model can save leakage by 79.75%, 93.56%, and 94.99% when the circuit slowdown is 0%, 3%, and 5%, respectively. The MLP model also achieves on average 74.79% less area penalty compared to the conventional fixed slowdown method when the circuit slowdown is 7%.展开更多
This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The hnprovement of this model over the previous one li...This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The hnprovement of this model over the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow; spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, th.e improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.展开更多
We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existin...We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.展开更多
A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by T...A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by TRNSYS. The comparative analysis of the characteristics of attenuation and delay proves that the operation of radiant cooling system increases the degree of temperature attenuation of the room and reduces the inner surface temperature of the wall significantly, but has little effect on the attenuation coefficient and delay time of wall heat transfer. The simulation results also show that the inner surface temperature of the walls in the radiant cooling room is much lower than that in non-cooling room in the day with the maximum cooling load, which reduces the indoor operation temperature largely, and improves the thermal comfort. Finally, according to the analysis of indoor temperature of the rooms with different operation schedules of cooling system, it can be derived that the indoor mean temperature changes with the working time of radiant cooling system, and the operation schedule can be adjusted in practice according to the actual indoor temperature to achieve the integration of energy efficiency and thermal comfort.展开更多
Homogeneous mixtures of CH4/air under moderate or intense low-oxygen dilution(MILD) combustion conditions were numerically studied to clarify the fundamental effects of exhaust gas recirculation(EGR),espe-cially C...Homogeneous mixtures of CH4/air under moderate or intense low-oxygen dilution(MILD) combustion conditions were numerically studied to clarify the fundamental effects of exhaust gas recirculation(EGR),espe-cially CO2 in EGR gases,on ignition characteristics.Specifically,effects of CO2 addition on autoignition delay time were emphasized at temperature between 1200 K and 1600 K for a wide range of the lean-to-rich equivalence ratio(0.2~2).The results showed that the ignition delay time increased with equivalence ratio or CO2 dilution ratio.Fur-thermore,ignition delay time was seen to be exponentially related with the reciprocal of initial temperature.Special concern was given to the chemical effects of CO2 on the ignition delay time.The enhancement of ignition delay time with CO2 addition can be mainly ascribed to the decrease of H,O and OH radicals.The predictions of tem-perature profiles and mole fractions of CO and CO2 were strongly related to the chemical effects of CO2.A single ignition time correlation was obtained in form of Arrhenius-type for the entire range of conditions as a function of temperature,CH4 mole fraction and O2 mole fraction.This correlation could successfully capture the complex be-haviors of ignition of CH4/air/CO2 mixture.The results can be applied to MILD combustion as "reference time",for example,to predict ignition delay time in turbulent reacting flow.展开更多
To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematica...To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.展开更多
A new cascade control program was proposed based on modified internal model control to handle stable,unstable and integrating processes with time delay.The program had totally four controllers of which the secondary l...A new cascade control program was proposed based on modified internal model control to handle stable,unstable and integrating processes with time delay.The program had totally four controllers of which the secondary loop had two controllers and the primary loop had two controllers.The two secondary loop controllers were designed using IMC technique.They were decoupled completely and could be adjusted independently,which avoided the undesirable influence on performance of the primary controllers.The main controller in the primary loop was devised as a PID using the method of minimum sensitivity,which could guarantee not only the nominal performance but also the robust stability of the system.A setpoint filter was added in the primary loop to improve the tracking performance.All the controllers of the two closed-loops were designed analytically,and could be adjusted and optimized by single parameter respectively.Simulations were carried out on three various processes with time delay,and the results show that the proposed method can provide a better performance of both set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
To further reduce the delay in cellular edge computing systems, a new type of resource scheduling algorithm is proposed. Without assuming the knowledge of the statistics of user task arrival traffic, the analytical fo...To further reduce the delay in cellular edge computing systems, a new type of resource scheduling algorithm is proposed. Without assuming the knowledge of the statistics of user task arrival traffic, the analytical formulae of the communication and computing queueing delays in many-to-one multi-server cellular edge computing systems are derived by using the arriving curve and leaving curve. Based on the analytical formulae, an optimization problem of delay minimization is directly formulated, and then a novel scheduling algorithm is designed. The delay performance of the proposed algorithm is evaluated via simulation experiments. Under the considered simulation parameters, the proposed algorithm can achieve 12% less total delay, as compared to the traditional algorithms. System parameters including the weight, the amount of computing resources provided by servers, and the average user task arrival rate have impact on the percentage of delay reduction. Therefore, compared with the queue length optimization based traditional scheduling algorithms, the proposed delay optimization-based scheduling algorithm can further reduce delay.展开更多
This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhan...This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhanced load disturbance rejection.To improve the servo response,a two-degree of freedom control scheme has been considered.A suitable guideline has been provided to select the desired reference model in the DS scheme.The direct synthesis controller has been approximated to the PID controller using the frequency response matching method.A consistently better performance has been obtained in comparison with the recently reported methods.展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
Rooting ability of indole 3-butyric acid (IBA)-induced stem cuttings in vegetative regeneration experiments depends on various parameters, which can be entrenched using sprouting value index (SVI), a mathematical ...Rooting ability of indole 3-butyric acid (IBA)-induced stem cuttings in vegetative regeneration experiments depends on various parameters, which can be entrenched using sprouting value index (SVI), a mathematical approach. In this study, field studies were carried out in Tabebuia rosea to generate clonal planting stock regeneration using three rooting medium at a location in Central Kerala, Peninsular India, for three consecutive years from October 2014 till June 2016 at four months regular intervals. Three IBA concentrations, viz., 200, 500 and 1,000 ppm, have been used and the data obtained was evaluated using SVI method in order to establish the suitable medium, which gives the maximum rooting results. Control cuttings did not record rooting in any of the trials. The high SVI was obtained when stem root cuttings planted in root trainers with coir pith compost (RTCP) for all the three concentration of IBA applied. Sprouting percentage was marked up and the delay in completion of sprouting/rooting initiation decreased by the use of IBA treatment.展开更多
Extra-cellular compounds, secreted by microorganisms into their surroundings, can be integrated in concrete composition as admixtures. These substances are important in biofilm formation and some of them can be used a...Extra-cellular compounds, secreted by microorganisms into their surroundings, can be integrated in concrete composition as admixtures. These substances are important in biofilm formation and some of them can be used as corrosion inhibitor of concrete reinforcement. This paper deals with products made with biological surface active compounds/agents allowing the development of more eco-friendly concrete. The influence of this environmentally friendly bio admixture on setting time, workability, bending and compressive strengths of various mortar based materials made of CEM I, CEM III and CEM V was studied. Mechanical tests were carried out to highlight the influence of admixture in workability and hardening of samples containing the biological product with ratio in the range of 0-2.5%. It was demonstrated that the presence of the new bio-compound admixture in mortar decreases their compressive strength after 28 days of standard curing, in spite of remaining higher than standard minimal strength. Furthermore, Vicat needle experiments have shown a tendency of this admixture to decrease the setting time. A discussion was finally proposed in order to correlate the setting times and the decrease of the mortar compressive strength, corresponding in fact to a hardening delay. This setting time delay could be linked to a delay of the admixtured mortar to increase its resistance. The slump results highlight the action of bio-admixture as a plasticizer on mortars because it increases their workability for a same water-cement ratio. This effect seems variable according to the added amount.展开更多
Existing optimization methodologies for intersection operations assumes a fixed geometric design, however the geometry and operational system should be simultaneously optimized to produce the best performance. Signali...Existing optimization methodologies for intersection operations assumes a fixed geometric design, however the geometry and operational system should be simultaneously optimized to produce the best performance. Signalized crosswalks are complex and critical pedestrian facilities. Their geometry and configuration directly affect the safety, cycle length and resulting delays for all users. As crosswalks become wider or they are placed further upstream, the cycle length will increase due to the all-red time requirement, which deteriorates the overall mobility levels of signalized intersections. In contrast, when crosswalk width decreases, the required minimum pedestrian crossing time increases due to the bi-directional pedestrian flow effects, which leads to longer cycle length. Furthermore, existing manuals and guidelines do not offer any specification for the required crosswalk width under various pedestrian demand conditions. This study aims to propose new criteria for designing crosswalk width at signalized intersections, which can optimize the performance from the viewpoint of vehicular traffic and pedestrians. The proposed methodology considers pedestrian demand and its characteristics (such as bi-directional flow effects), vehicle demand and the geometric characteristics of the intersection The concept of optimized crosswalk width is proposed and demonstrated through a case study. Moreover, a comprehensive discussion regarding the merits and drawbacks of existing strategies on positioning crosswalks is presented. It was found that at signalized intersections, which are characterized by low pedestrian and high vehicle demands, crosswalk width of 2 meters is appropriate to minimize cycle length and resulting delays for all users including pedestrians.展开更多
A new accurate calculation method of electric power harmonic parameters was presented. Based on the delay time theorem of Fourier transform, the frequency of the electric power was calculated, and then, suing interpol...A new accurate calculation method of electric power harmonic parameters was presented. Based on the delay time theorem of Fourier transform, the frequency of the electric power was calculated, and then, suing interpolation in the frequency domain of the windows, the parameters (amplitude and phase) of each harmonic frequency signals were calculated accurately. In the paper, the effect of the delay time and the windows on the electric power harmonic calculation accuracy was analysed. The digital simulation and the physical measurement tests show that the proposed method is effective and has more advantages than other methods which are based on multipoint interpolation especially in calculation time cost; therefore, it is very suitable to be used in the single chip DSP micro-processor.展开更多
According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution i...According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.展开更多
Ignition delay times of China No.3 aviation kerosene were measured behind reflected shock waves using a heated high-pressure shock tube.Experimental conditions covered a wider temperature range of 820-1500 K,at pressu...Ignition delay times of China No.3 aviation kerosene were measured behind reflected shock waves using a heated high-pressure shock tube.Experimental conditions covered a wider temperature range of 820-1500 K,at pressures of 5.5,11 and 22 atm,equivalence ratios of 0.5,1.0 and 1.5,and oxygen concentration of 20%.Adsorption of kerosene on the shock tube wall was taken into account.Ignition delay times were determined from the onset of the excited radical OH emission in conjunction with the pressure profiles.The experimental results of ignition delay time were correlated with the equations:11 0.22 1.09 2 3.2 10 [Keros ene ] [O2] exp(69941 RT) and 7 0.88 0.23 4.72 10 P exp(62092 RT).The current measurements provide the ignition delay behavior of China No.3 aviation kerosene at high pressures and air-like O2 concentration.展开更多
文摘针对延迟容忍网络现有社区内路由算法在选择中继节点未考虑节点间有序连接而高估通信路径可达性问题,提出一种基于连通时序效用的路由算法——RBCSU(Routing Based on Connected Sequence of Utility),该算法采用社区内节点间连通时序估计节点间通信路径状态,进而考虑节点可达率、时延度以及相似度计算节点效用值,并通过比较其效用值来选择出最优的中继节点转发消息.仿真结果表明,相比于Epidemic、PRoPHET和SimBet算法,该算法能够有效提高消息投递率、降低消息传输时延和网络开销.
文摘A new approach of incremental placement approach is described.The obtained timing information drives an efficient net-based placement technique,which dynamically adapts the net weights during successive placement steps.Several methods to combine timing optimization and congestion reducing together are proposed.Cells on critical paths are replaced according to timing and congestion constraints.Experimental results show that our approach can efficiently reduce cycle time and enhance route ability.The max path delay is reduced by 10% on an average afterincremental placement on wirelength-optimized circuits.And it achieves the same quality with a high speed up compared to timing driven detailed placement algorithm.
基金This study was supported by the Key Program of Ministry of Education of China (01066)
文摘The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.
文摘A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mixed-integer linear programming (MLP) problem in order to simultaneously place and size the sleep transistors optimally. Because of better circuit slack utilization, our experimental results show that the MLP model can save leakage by 79.75%, 93.56%, and 94.99% when the circuit slowdown is 0%, 3%, and 5%, respectively. The MLP model also achieves on average 74.79% less area penalty compared to the conventional fixed slowdown method when the circuit slowdown is 7%.
基金The project supported by the Key Foundation Project of Shanghai under Grant No. 032912066
文摘This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The hnprovement of this model over the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow; spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, th.e improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.
基金supported by the Major State Basic Research Program of China (973 project No. 2013CB329301 and 2010CB327806)the Natural Science Fund of China (NSFC project No. 61372085, 61032003, 61271165 and 61202379)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (RFDP project No. 20120185110025, 20120185110030 and 20120032120041)supported by Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
文摘We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.
基金Project(2010DFA72740) supported by the International Science & Technology Cooperation Program of China
文摘A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by TRNSYS. The comparative analysis of the characteristics of attenuation and delay proves that the operation of radiant cooling system increases the degree of temperature attenuation of the room and reduces the inner surface temperature of the wall significantly, but has little effect on the attenuation coefficient and delay time of wall heat transfer. The simulation results also show that the inner surface temperature of the walls in the radiant cooling room is much lower than that in non-cooling room in the day with the maximum cooling load, which reduces the indoor operation temperature largely, and improves the thermal comfort. Finally, according to the analysis of indoor temperature of the rooms with different operation schedules of cooling system, it can be derived that the indoor mean temperature changes with the working time of radiant cooling system, and the operation schedule can be adjusted in practice according to the actual indoor temperature to achieve the integration of energy efficiency and thermal comfort.
基金Supported by the National Natural Science Foundation of China (50206014)the Shuguang Scholar Program of Shanghai Education Development Foundation (05SG23)
文摘Homogeneous mixtures of CH4/air under moderate or intense low-oxygen dilution(MILD) combustion conditions were numerically studied to clarify the fundamental effects of exhaust gas recirculation(EGR),espe-cially CO2 in EGR gases,on ignition characteristics.Specifically,effects of CO2 addition on autoignition delay time were emphasized at temperature between 1200 K and 1600 K for a wide range of the lean-to-rich equivalence ratio(0.2~2).The results showed that the ignition delay time increased with equivalence ratio or CO2 dilution ratio.Fur-thermore,ignition delay time was seen to be exponentially related with the reciprocal of initial temperature.Special concern was given to the chemical effects of CO2 on the ignition delay time.The enhancement of ignition delay time with CO2 addition can be mainly ascribed to the decrease of H,O and OH radicals.The predictions of tem-perature profiles and mole fractions of CO and CO2 were strongly related to the chemical effects of CO2.A single ignition time correlation was obtained in form of Arrhenius-type for the entire range of conditions as a function of temperature,CH4 mole fraction and O2 mole fraction.This correlation could successfully capture the complex be-haviors of ignition of CH4/air/CO2 mixture.The results can be applied to MILD combustion as "reference time",for example,to predict ignition delay time in turbulent reacting flow.
基金The National Natural Science Foundation of China(No.61571111)the Incubation Project of the National Natural Science Foundation of China at Nanjing University of Posts and Telecommunications(No.NY219106)
文摘To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.
基金Project(J11LG02) supported by the Science and Technology Funds of Education Department of Shandong Province,China
文摘A new cascade control program was proposed based on modified internal model control to handle stable,unstable and integrating processes with time delay.The program had totally four controllers of which the secondary loop had two controllers and the primary loop had two controllers.The two secondary loop controllers were designed using IMC technique.They were decoupled completely and could be adjusted independently,which avoided the undesirable influence on performance of the primary controllers.The main controller in the primary loop was devised as a PID using the method of minimum sensitivity,which could guarantee not only the nominal performance but also the robust stability of the system.A setpoint filter was added in the primary loop to improve the tracking performance.All the controllers of the two closed-loops were designed analytically,and could be adjusted and optimized by single parameter respectively.Simulations were carried out on three various processes with time delay,and the results show that the proposed method can provide a better performance of both set-point tracking and disturbance rejection and robustness against parameters perturbation.
基金The National Natural Science Foundation of China(No.61571111)
文摘To further reduce the delay in cellular edge computing systems, a new type of resource scheduling algorithm is proposed. Without assuming the knowledge of the statistics of user task arrival traffic, the analytical formulae of the communication and computing queueing delays in many-to-one multi-server cellular edge computing systems are derived by using the arriving curve and leaving curve. Based on the analytical formulae, an optimization problem of delay minimization is directly formulated, and then a novel scheduling algorithm is designed. The delay performance of the proposed algorithm is evaluated via simulation experiments. Under the considered simulation parameters, the proposed algorithm can achieve 12% less total delay, as compared to the traditional algorithms. System parameters including the weight, the amount of computing resources provided by servers, and the average user task arrival rate have impact on the percentage of delay reduction. Therefore, compared with the queue length optimization based traditional scheduling algorithms, the proposed delay optimization-based scheduling algorithm can further reduce delay.
文摘This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhanced load disturbance rejection.To improve the servo response,a two-degree of freedom control scheme has been considered.A suitable guideline has been provided to select the desired reference model in the DS scheme.The direct synthesis controller has been approximated to the PID controller using the frequency response matching method.A consistently better performance has been obtained in comparison with the recently reported methods.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
文摘Rooting ability of indole 3-butyric acid (IBA)-induced stem cuttings in vegetative regeneration experiments depends on various parameters, which can be entrenched using sprouting value index (SVI), a mathematical approach. In this study, field studies were carried out in Tabebuia rosea to generate clonal planting stock regeneration using three rooting medium at a location in Central Kerala, Peninsular India, for three consecutive years from October 2014 till June 2016 at four months regular intervals. Three IBA concentrations, viz., 200, 500 and 1,000 ppm, have been used and the data obtained was evaluated using SVI method in order to establish the suitable medium, which gives the maximum rooting results. Control cuttings did not record rooting in any of the trials. The high SVI was obtained when stem root cuttings planted in root trainers with coir pith compost (RTCP) for all the three concentration of IBA applied. Sprouting percentage was marked up and the delay in completion of sprouting/rooting initiation decreased by the use of IBA treatment.
文摘Extra-cellular compounds, secreted by microorganisms into their surroundings, can be integrated in concrete composition as admixtures. These substances are important in biofilm formation and some of them can be used as corrosion inhibitor of concrete reinforcement. This paper deals with products made with biological surface active compounds/agents allowing the development of more eco-friendly concrete. The influence of this environmentally friendly bio admixture on setting time, workability, bending and compressive strengths of various mortar based materials made of CEM I, CEM III and CEM V was studied. Mechanical tests were carried out to highlight the influence of admixture in workability and hardening of samples containing the biological product with ratio in the range of 0-2.5%. It was demonstrated that the presence of the new bio-compound admixture in mortar decreases their compressive strength after 28 days of standard curing, in spite of remaining higher than standard minimal strength. Furthermore, Vicat needle experiments have shown a tendency of this admixture to decrease the setting time. A discussion was finally proposed in order to correlate the setting times and the decrease of the mortar compressive strength, corresponding in fact to a hardening delay. This setting time delay could be linked to a delay of the admixtured mortar to increase its resistance. The slump results highlight the action of bio-admixture as a plasticizer on mortars because it increases their workability for a same water-cement ratio. This effect seems variable according to the added amount.
文摘Existing optimization methodologies for intersection operations assumes a fixed geometric design, however the geometry and operational system should be simultaneously optimized to produce the best performance. Signalized crosswalks are complex and critical pedestrian facilities. Their geometry and configuration directly affect the safety, cycle length and resulting delays for all users. As crosswalks become wider or they are placed further upstream, the cycle length will increase due to the all-red time requirement, which deteriorates the overall mobility levels of signalized intersections. In contrast, when crosswalk width decreases, the required minimum pedestrian crossing time increases due to the bi-directional pedestrian flow effects, which leads to longer cycle length. Furthermore, existing manuals and guidelines do not offer any specification for the required crosswalk width under various pedestrian demand conditions. This study aims to propose new criteria for designing crosswalk width at signalized intersections, which can optimize the performance from the viewpoint of vehicular traffic and pedestrians. The proposed methodology considers pedestrian demand and its characteristics (such as bi-directional flow effects), vehicle demand and the geometric characteristics of the intersection The concept of optimized crosswalk width is proposed and demonstrated through a case study. Moreover, a comprehensive discussion regarding the merits and drawbacks of existing strategies on positioning crosswalks is presented. It was found that at signalized intersections, which are characterized by low pedestrian and high vehicle demands, crosswalk width of 2 meters is appropriate to minimize cycle length and resulting delays for all users including pedestrians.
文摘A new accurate calculation method of electric power harmonic parameters was presented. Based on the delay time theorem of Fourier transform, the frequency of the electric power was calculated, and then, suing interpolation in the frequency domain of the windows, the parameters (amplitude and phase) of each harmonic frequency signals were calculated accurately. In the paper, the effect of the delay time and the windows on the electric power harmonic calculation accuracy was analysed. The digital simulation and the physical measurement tests show that the proposed method is effective and has more advantages than other methods which are based on multipoint interpolation especially in calculation time cost; therefore, it is very suitable to be used in the single chip DSP micro-processor.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272346)the National Basic Research Program of China("973"Project)(Grant No.2013CB733100)
文摘According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.
基金supported by the National Natural Science Foundation of China (Grant No.90916017)
文摘Ignition delay times of China No.3 aviation kerosene were measured behind reflected shock waves using a heated high-pressure shock tube.Experimental conditions covered a wider temperature range of 820-1500 K,at pressures of 5.5,11 and 22 atm,equivalence ratios of 0.5,1.0 and 1.5,and oxygen concentration of 20%.Adsorption of kerosene on the shock tube wall was taken into account.Ignition delay times were determined from the onset of the excited radical OH emission in conjunction with the pressure profiles.The experimental results of ignition delay time were correlated with the equations:11 0.22 1.09 2 3.2 10 [Keros ene ] [O2] exp(69941 RT) and 7 0.88 0.23 4.72 10 P exp(62092 RT).The current measurements provide the ignition delay behavior of China No.3 aviation kerosene at high pressures and air-like O2 concentration.