A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is const...A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is constructed.And then,by using the theory of differential inequalities the uniformly validity of solution is proved.展开更多
In this paper, a diffusive hepatitis B virus (HBV) infection model with a discrete time delay is presented and analyzed, where the spatial mobility of both intracellular capsid covered HBV DNA and HBV and the intrac...In this paper, a diffusive hepatitis B virus (HBV) infection model with a discrete time delay is presented and analyzed, where the spatial mobility of both intracellular capsid covered HBV DNA and HBV and the intracellular delay in the reproduction of infected hepatocytes are taken into account. We define the basic reproduction number R0 that determines the dynamical behavior of the model. The local and global stability of the spatially homogeneous steady states are analyzed by using the linearization technique and the direct Lyapunov method, respectively. It is shown that the susceptible uninfected steady state is globally asymptotically stable whenever R0 ≤i and is unstable whenever R0 〉1. Also, the infected steady state is globally asymptotically stable when R0 〉 1. Finally, numerical simulations are carried out to illustrate the results obtained.展开更多
This paper studies a prey-predator singular bioeconomic system with time delay and diffusion, which is described by differential-algebraic equations. For this system without diffusion, there exist three bifurcation ph...This paper studies a prey-predator singular bioeconomic system with time delay and diffusion, which is described by differential-algebraic equations. For this system without diffusion, there exist three bifurcation phenomena: Transcritical bifurcation, singularity induced bifurcation, and Hopf bifurcation. Compared with other biological systems described by differential equations, singularity induced bifurcation only occurs in singular system and usually links with the expansion of population. When the diffusion is present, it is shown that the positive equilibrium point loses its stability at some critical values of diffusion rate and periodic oscillations occur due to the increase of time delay. Furthermore, numerical simulations illustrate the effectiveness of results and the related biological implications are discussed.展开更多
A delayed predator-prey diffusion system with homogeneous Neumann boundary condi- tion is considered. In order to study the impact of the time delay on the stability of the model, the delay ^- is taken as the bifurcat...A delayed predator-prey diffusion system with homogeneous Neumann boundary condi- tion is considered. In order to study the impact of the time delay on the stability of the model, the delay ^- is taken as the bifurcation parameter, the results show that when the time delay across some critical values, the Hopf bifurcations may occur. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solution have been established. The effect of the diffusion on the bifurcated periodic solution is also considered. A numerical example is given to support the main result.展开更多
基金the National Natural Science Foundation of China (Nos.40676016 and 40876010)the National Basic Research Program (973) of China (Nos.2003CB415101-03 and 2004CB418304)+2 种基金the Knowledge Innovation Project of Chinese Academy of Sciences (No.KZCX2-YW-Q03-08)LASG State Key Laboratory Special FundE-Institutes of Shanghai Municipal Education Commission (No.E03004)
文摘A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is constructed.And then,by using the theory of differential inequalities the uniformly validity of solution is proved.
文摘In this paper, a diffusive hepatitis B virus (HBV) infection model with a discrete time delay is presented and analyzed, where the spatial mobility of both intracellular capsid covered HBV DNA and HBV and the intracellular delay in the reproduction of infected hepatocytes are taken into account. We define the basic reproduction number R0 that determines the dynamical behavior of the model. The local and global stability of the spatially homogeneous steady states are analyzed by using the linearization technique and the direct Lyapunov method, respectively. It is shown that the susceptible uninfected steady state is globally asymptotically stable whenever R0 ≤i and is unstable whenever R0 〉1. Also, the infected steady state is globally asymptotically stable when R0 〉 1. Finally, numerical simulations are carried out to illustrate the results obtained.
基金This work was supported by the National Science Foundation of China under Grant No. 60974004 and Natural Science Foundation of China under Grant No. 60904009.
文摘This paper studies a prey-predator singular bioeconomic system with time delay and diffusion, which is described by differential-algebraic equations. For this system without diffusion, there exist three bifurcation phenomena: Transcritical bifurcation, singularity induced bifurcation, and Hopf bifurcation. Compared with other biological systems described by differential equations, singularity induced bifurcation only occurs in singular system and usually links with the expansion of population. When the diffusion is present, it is shown that the positive equilibrium point loses its stability at some critical values of diffusion rate and periodic oscillations occur due to the increase of time delay. Furthermore, numerical simulations illustrate the effectiveness of results and the related biological implications are discussed.
文摘A delayed predator-prey diffusion system with homogeneous Neumann boundary condi- tion is considered. In order to study the impact of the time delay on the stability of the model, the delay ^- is taken as the bifurcation parameter, the results show that when the time delay across some critical values, the Hopf bifurcations may occur. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solution have been established. The effect of the diffusion on the bifurcated periodic solution is also considered. A numerical example is given to support the main result.