This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the co...This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.展开更多
文摘This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.