Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional fil...Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.展开更多
The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristi...The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristics.We first introduce the realization of HHT empirical mode decomposition(EMD) and then comparatively analyze three instantaneous frequency algorithms based on intrinsic mode functions(IMF) resulting from EMD,of which one uses the average instantaneous frequency of two sample intervals having higher resolution which can determine that the signal frequency components change with time.The method is used with 3-D poststack migrated seismic data of marine carbonate strata in southern China to effectively extract the three instantaneous attributes.The instantaneous phase attributes of the second intrinsic mode functions(IMF2) better describe the reef facies of the platform margin and the IMF2 instantaneous frequency attribute has better zoning.Combining analysis of the three IMF2 instantaneous seismic attributes and drilling data can identify the distribution of sedimentary facies well.展开更多
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s...Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.展开更多
Adaptive data analysis provides an important tool in extracting hidden physical information from multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency analysis m...Adaptive data analysis provides an important tool in extracting hidden physical information from multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency analysis methods that we introduced recently to study trend and instantaneous frequency of nonlinear and nonstationary data. These methods are inspired by the empirical mode decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t) cos(0(t))}, where a is assumed to be less oscillatory than cos(θ(t)) and θ '≥ 0. This problem can be formulated as a nonlinear ι0 optimization problem. We have proposed two methods to solve this nonlinear optimization problem. The first one is based on nonlinear basis pursuit and the second one is based on nonlinear matching pursuit. Convergence analysis has been carried out for the nonlinear matching pursuit method. Some numerical experiments are given to demonstrate the effectiveness of the proposed methods.展开更多
If a linear time-invariant system is uncontrollable,then the state space can be decomposed as a direct sum of a controllable subspace and an uncontrollable subspace.In this paper,for a class of discrete-time bilinear ...If a linear time-invariant system is uncontrollable,then the state space can be decomposed as a direct sum of a controllable subspace and an uncontrollable subspace.In this paper,for a class of discrete-time bilinear systems which are uncontrollable but can be nearly controllable,by studying the nearly-controllable subspaces and defining the near-controllability index,the controllability properties of the systems are fully characterized.Examples are provided to illustrate the conceptions and results of the paper.展开更多
基金supported by National Natural Science Foundation of China(Grant No.40874059)the National Key Science Engineering Projects of the Ninth Five Year Plan([1999]1423)
文摘Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.
基金supported by the National 863 Program (Grant No. 2008AA093001)
文摘The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristics.We first introduce the realization of HHT empirical mode decomposition(EMD) and then comparatively analyze three instantaneous frequency algorithms based on intrinsic mode functions(IMF) resulting from EMD,of which one uses the average instantaneous frequency of two sample intervals having higher resolution which can determine that the signal frequency components change with time.The method is used with 3-D poststack migrated seismic data of marine carbonate strata in southern China to effectively extract the three instantaneous attributes.The instantaneous phase attributes of the second intrinsic mode functions(IMF2) better describe the reef facies of the platform margin and the IMF2 instantaneous frequency attribute has better zoning.Combining analysis of the three IMF2 instantaneous seismic attributes and drilling data can identify the distribution of sedimentary facies well.
基金Project(51576213)supported by the National Natural Science Foundation of ChinaProject(2015RS4015)supported by the Hunan Scientific Program,ChinaProject(2016zzts323)supported by the Innovation Project of Central South University,China
文摘Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.
基金supported by Air Force Ofce of Scientifc ResearchMultidisciplinary University Research Initiative+3 种基金USA(Grant No.FA9550-09-1-0613)Department of Energy of USA(Grant No.DE-FG02-06ER25727)Natural Science Foundation of USA(Grant No.DMS-0908546)National Natural Science Foundation of China(Grant No.11201257)
文摘Adaptive data analysis provides an important tool in extracting hidden physical information from multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency analysis methods that we introduced recently to study trend and instantaneous frequency of nonlinear and nonstationary data. These methods are inspired by the empirical mode decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t) cos(0(t))}, where a is assumed to be less oscillatory than cos(θ(t)) and θ '≥ 0. This problem can be formulated as a nonlinear ι0 optimization problem. We have proposed two methods to solve this nonlinear optimization problem. The first one is based on nonlinear basis pursuit and the second one is based on nonlinear matching pursuit. Convergence analysis has been carried out for the nonlinear matching pursuit method. Some numerical experiments are given to demonstrate the effectiveness of the proposed methods.
基金supported by the China Postdoctoral Science Foundation funded project under Grant Nos.2011M500216,2012T50035the National Nature Science Foundation of China under Grant Nos.61203231,61273141
文摘If a linear time-invariant system is uncontrollable,then the state space can be decomposed as a direct sum of a controllable subspace and an uncontrollable subspace.In this paper,for a class of discrete-time bilinear systems which are uncontrollable but can be nearly controllable,by studying the nearly-controllable subspaces and defining the near-controllability index,the controllability properties of the systems are fully characterized.Examples are provided to illustrate the conceptions and results of the paper.