The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties...The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.展开更多
The roles of Zn content and thermo-mechanical treatment in affecting microstructures and mechanical properties of Mg-x%Zn-1%Mn(mass fraction,x=4,5,6,7,8,9) wrought Mg alloys were investigated.The microstructure was ...The roles of Zn content and thermo-mechanical treatment in affecting microstructures and mechanical properties of Mg-x%Zn-1%Mn(mass fraction,x=4,5,6,7,8,9) wrought Mg alloys were investigated.The microstructure was extremely refined by dynamic recrystallization(DRC) during extrusion.With increasing Zn content,the DRC grains tended to grow up,at the same time,more second phase streamlines would be present,which restricted the further growing.During solution treatment,the DRC grains would rapidly grow up;however,higher Zn content could hinder the grain boundary expanding,which results in finer ultimate grains.MgZn2 dispersoid particles which are coherent with the matrix would precipitate from the supersaturated solid solution during the one-step aging process,and nano-sized GP zones formed during the pre-aging stage of the two-step aging provide a huge amount of effective nuclei for the MgZn2 phases formed in the second stage,which makes the MgZn2 particles much finer and more dispersed.The mechanical properties of as-extruded samples were not so sensitive to the variation of Zn content,the tensile strength fluctuates between 300 and 320 MPa,and the elongation maintains a high value between 11% and 14%.The strength of aged samples rises as a parabolic curve with increasing Zn content,specifically,the tensile strength of one-step aged samples rises from 278 to 374 MPa,and that of two-step aged ones rises from 284 to 378 MPa,yet the elongation of all aged samples is below 8%.When Zn content exceeds its solid solution limit in Mg-Zn system(6.2%,mass fraction),the strength rises slowly but the elongation deteriorates sharply,so a Mg-Zn-Mn alloy with 6% Zn possesses the best mechanical properties,that is,the tensile strengths after one-and two-step aging are 352 and 366 MPa,respectively,and the corresponding elongations are 7.98% and 5.2%,respectively.展开更多
Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests a...Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests and transmission electron microscopy (TEM). The results show that the ultimate tensile strength, yield strength and elongation for Alloys A, B and C are 736 MPa, 695.5 MPa and 7%; 711 MPa, 674 MPa and 12.5%; 740.5 MPa, 707.5 MPa and 13%, respectively after solid solution treatment ((450 °C, 2 h)+(470 °C, 1 h)) followed by aging at 120 °C for 12 h. The dominant strengthening phases in Alloy A are GPII zone andη′ phase, the main precipitate in Alloy B isη′ phase, and the main precipitates in Alloy C are GPI zone, GPII zone andη′ phase, which are the reason for better comprehensive properties of Alloy C. The increase of zinc content leads to the improvement of the strength. The increase of copper content improves the elongation but slightly decreases the strength. Large second-phase particles formed by the increase in the manganese content induce a decrease in the elongation of alloys.展开更多
The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental ...The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental alloy decreases with the increase of ageing time from 0 to 108 h.The corrosion resistance of the experimental alloy was found to increase with the increase of the size of the precipitate phases.The open circuit potential of the experimental alloy increases with the increase of the ageing time.The potentiodynamic polarization curves show that the cathodic over-potential increases with the increase of ageing time,leading to a decrease in the current density of anodic current plateau with the increase of ageing time.展开更多
A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechan...A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.展开更多
[Objective] The aim of the research was to study the effect of the ice bath time after heat shock and the incubation time on the transformation efficacy,and to establish a simple and quick transformation method.[Metho...[Objective] The aim of the research was to study the effect of the ice bath time after heat shock and the incubation time on the transformation efficacy,and to establish a simple and quick transformation method.[Method]Competent cells were prepared with two buffer solutions;with the ice bath time after heat shock and the recovery time as the variables,the relationship between these two factors and transformation efficacy was studied.[Result]The transformation efficacy was the best when the ice bath time was 2 min and the recovery time was 30 or 40 min;when the ice bath time and the recovery time was 0 min,a certain amount of transformants still could be obtained.[Conclusion]The ice bath time after heat shock and the recovery time had certain impact on transformation efficacy,but they were not the decisive factors.Therefore,in the general transformation experiment,these two steps could be omitted.展开更多
The evolution and distribution of the aging precipitates in 1460 Al-Li alloy with high Li concentration (2.14%, mass fraction) during T6 aging and two-step T8 (4% predeformation) aging were investigated through TEM. T...The evolution and distribution of the aging precipitates in 1460 Al-Li alloy with high Li concentration (2.14%, mass fraction) during T6 aging and two-step T8 (4% predeformation) aging were investigated through TEM. The aging precipitates include δ'(Al3Li) and T1 (Al2CuLi) phases, of which the δ' phases are formed first in grain interiors. A lot of δ'/GPI/δ' composite precipitates in which GPI zones are flanked with a pair of δ' phases, are formed at 145℃ of T6 aging, which are thermally stable. At 160℃ and 175℃ of T6 aging, many T1 phases nucleate first at subgrain boundaries and grain boundaries, and then form and grow within grains. As to the T8 aging, the δ'/GPI/δ' composite precipitates are formed during the first-step aging at 130℃ for 20 h, which are thermally stable during the second-step aging at 160℃. The plastic predeformation accelerates T1 nucleation within grains during the second-step aging at 160℃.展开更多
In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al...A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al-Zn-MgCu alloy during regressive reaging. The corresponding creep strain and mechanical properties of samples were studied by conducting creep tests and uniaxial tensile tests. The electrical conductivity was measured using an eddy-current conductivity meter. The microstructures were observed by transmission electron microscopy(TEM). With the increase in regression aging time, the steady creep strain first increased and then decreased, and reached the maximum at 45 min.The steady creep strain increased with the increase in regression aging temperature, and reached the maximum at 200 ℃.The level of steady creep strain was determined by precipitation and dislocation recovery. Creep aging strengthens 7B50-RRA treated with regression aging time at 190 ℃ for 10 min, and the difference in the mechanical properties of alloy becomes smaller. The diffusion of solute atoms reduces the scattering of electrons, leading to a significant improvement in electrical conductivity and stress corrosion cracking(SCC) resistance after creep aging. The findings of this study could help in the application of creep aging forming(CAF) technology in Al-Zn-Mg-Cu alloy under RRA treatment.展开更多
基金the Tianjin Key Laboratory of Fastening and Connection Technology Enterprises 2022—2023,China(No.TKLF2022-02-C-02)the technical support from the School of Materials Science and Engineering,Central South University,China.
文摘The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.
基金Project(2007CB613700)supported by the National Basic Research Program of ChinaProject(2007BAG06B04)supported by the National Science and Technology Pillar Program During the 11th Five-Year Plan Period,China+1 种基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(CDJXS10132202)supported by the Fundamental Research Funds for the Central Universities,China
文摘The roles of Zn content and thermo-mechanical treatment in affecting microstructures and mechanical properties of Mg-x%Zn-1%Mn(mass fraction,x=4,5,6,7,8,9) wrought Mg alloys were investigated.The microstructure was extremely refined by dynamic recrystallization(DRC) during extrusion.With increasing Zn content,the DRC grains tended to grow up,at the same time,more second phase streamlines would be present,which restricted the further growing.During solution treatment,the DRC grains would rapidly grow up;however,higher Zn content could hinder the grain boundary expanding,which results in finer ultimate grains.MgZn2 dispersoid particles which are coherent with the matrix would precipitate from the supersaturated solid solution during the one-step aging process,and nano-sized GP zones formed during the pre-aging stage of the two-step aging provide a huge amount of effective nuclei for the MgZn2 phases formed in the second stage,which makes the MgZn2 particles much finer and more dispersed.The mechanical properties of as-extruded samples were not so sensitive to the variation of Zn content,the tensile strength fluctuates between 300 and 320 MPa,and the elongation maintains a high value between 11% and 14%.The strength of aged samples rises as a parabolic curve with increasing Zn content,specifically,the tensile strength of one-step aged samples rises from 278 to 374 MPa,and that of two-step aged ones rises from 284 to 378 MPa,yet the elongation of all aged samples is below 8%.When Zn content exceeds its solid solution limit in Mg-Zn system(6.2%,mass fraction),the strength rises slowly but the elongation deteriorates sharply,so a Mg-Zn-Mn alloy with 6% Zn possesses the best mechanical properties,that is,the tensile strengths after one-and two-step aging are 352 and 366 MPa,respectively,and the corresponding elongations are 7.98% and 5.2%,respectively.
基金Project supported by the Open Foundation of CNPC Key Laboratory for Petroleum Tubular Goods Engineering,China
文摘Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests and transmission electron microscopy (TEM). The results show that the ultimate tensile strength, yield strength and elongation for Alloys A, B and C are 736 MPa, 695.5 MPa and 7%; 711 MPa, 674 MPa and 12.5%; 740.5 MPa, 707.5 MPa and 13%, respectively after solid solution treatment ((450 °C, 2 h)+(470 °C, 1 h)) followed by aging at 120 °C for 12 h. The dominant strengthening phases in Alloy A are GPII zone andη′ phase, the main precipitate in Alloy B isη′ phase, and the main precipitates in Alloy C are GPI zone, GPII zone andη′ phase, which are the reason for better comprehensive properties of Alloy C. The increase of zinc content leads to the improvement of the strength. The increase of copper content improves the elongation but slightly decreases the strength. Large second-phase particles formed by the increase in the manganese content induce a decrease in the elongation of alloys.
基金Project(51074186) supported by the National Natural Science Foundation of China
文摘The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental alloy decreases with the increase of ageing time from 0 to 108 h.The corrosion resistance of the experimental alloy was found to increase with the increase of the size of the precipitate phases.The open circuit potential of the experimental alloy increases with the increase of the ageing time.The potentiodynamic polarization curves show that the cathodic over-potential increases with the increase of ageing time,leading to a decrease in the current density of anodic current plateau with the increase of ageing time.
基金Project(51235010)supported by the National Natural Science Foundation of ChinaProject(2010CB731700)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by PhD Programs Foundation of Ministry of Education of China
文摘A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.
基金Supported by Foundation for Returned Scholars of Hebei Province(2010)Research Fund for the Doctoral Program of Hebei Normal University(L2009B13)~~
文摘[Objective] The aim of the research was to study the effect of the ice bath time after heat shock and the incubation time on the transformation efficacy,and to establish a simple and quick transformation method.[Method]Competent cells were prepared with two buffer solutions;with the ice bath time after heat shock and the recovery time as the variables,the relationship between these two factors and transformation efficacy was studied.[Result]The transformation efficacy was the best when the ice bath time was 2 min and the recovery time was 30 or 40 min;when the ice bath time and the recovery time was 0 min,a certain amount of transformants still could be obtained.[Conclusion]The ice bath time after heat shock and the recovery time had certain impact on transformation efficacy,but they were not the decisive factors.Therefore,in the general transformation experiment,these two steps could be omitted.
基金Projection(2013AA032401)supported by the National High-Tech Research and Development Program of China
文摘The evolution and distribution of the aging precipitates in 1460 Al-Li alloy with high Li concentration (2.14%, mass fraction) during T6 aging and two-step T8 (4% predeformation) aging were investigated through TEM. The aging precipitates include δ'(Al3Li) and T1 (Al2CuLi) phases, of which the δ' phases are formed first in grain interiors. A lot of δ'/GPI/δ' composite precipitates in which GPI zones are flanked with a pair of δ' phases, are formed at 145℃ of T6 aging, which are thermally stable. At 160℃ and 175℃ of T6 aging, many T1 phases nucleate first at subgrain boundaries and grain boundaries, and then form and grow within grains. As to the T8 aging, the δ'/GPI/δ' composite precipitates are formed during the first-step aging at 130℃ for 20 h, which are thermally stable during the second-step aging at 160℃. The plastic predeformation accelerates T1 nucleation within grains during the second-step aging at 160℃.
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金Project(2017YFB0306300) supported by the National key R&D Program of ChinaProjects(51675538, 51905551)supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2019-11) supported by Free Exploration Project of State Key Laboratory of High performance Complex Manufacturing,China。
文摘A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al-Zn-MgCu alloy during regressive reaging. The corresponding creep strain and mechanical properties of samples were studied by conducting creep tests and uniaxial tensile tests. The electrical conductivity was measured using an eddy-current conductivity meter. The microstructures were observed by transmission electron microscopy(TEM). With the increase in regression aging time, the steady creep strain first increased and then decreased, and reached the maximum at 45 min.The steady creep strain increased with the increase in regression aging temperature, and reached the maximum at 200 ℃.The level of steady creep strain was determined by precipitation and dislocation recovery. Creep aging strengthens 7B50-RRA treated with regression aging time at 190 ℃ for 10 min, and the difference in the mechanical properties of alloy becomes smaller. The diffusion of solute atoms reduces the scattering of electrons, leading to a significant improvement in electrical conductivity and stress corrosion cracking(SCC) resistance after creep aging. The findings of this study could help in the application of creep aging forming(CAF) technology in Al-Zn-Mg-Cu alloy under RRA treatment.