期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
具时滞收获单种群模型的Hopf分支与稳定性切换 被引量:2
1
作者 李顺异 《黔南民族师范学院学报》 2019年第4期1-6,共6页
构建了具有时滞收获的单种群模型,以时滞为参数,分别在单时滞和两时滞情况下,分析了系统正平衡点发生局部Hopf分支和稳定性切换的条件。数值例子验证了理论结果,展示了自然Hopf分支、条件Hopf分支、稳定性切换等动力学现象,为生物种群... 构建了具有时滞收获的单种群模型,以时滞为参数,分别在单时滞和两时滞情况下,分析了系统正平衡点发生局部Hopf分支和稳定性切换的条件。数值例子验证了理论结果,展示了自然Hopf分支、条件Hopf分支、稳定性切换等动力学现象,为生物种群的时滞控制提供了理论基础。 展开更多
关键词 单种群模型 时滞收获 HOPF分支 稳定性切换
下载PDF
Pseudo-almost periodic solution for impulsive hematopoiesis model with infinite delays and linear harvesting term 被引量:2
2
作者 Zhinan Xia Dingjiang Wang 《International Journal of Biomathematics》 2016年第5期243-259,共17页
In this paper, a generalized impulsive model of hematopoiesis with infinite delays and linear harvesting term is investigated. The main purpose of this paper is to study the existence, uniqueness and exponential stabi... In this paper, a generalized impulsive model of hematopoiesis with infinite delays and linear harvesting term is investigated. The main purpose of this paper is to study the existence, uniqueness and exponential stability of the positive pseudo-almost periodic solutions, which improve and extend some known relevant results. Moreover, an example is given to illustrate the main findings. 展开更多
关键词 Pseudo-almost periodic solutions hematopoiesis model exponentially stable infinite delay linear harvesting term.
原文传递
Harvest control for a delayed stage-structured diffusive predator-prey model
3
作者 Xuebing Zhang Hongyong Zhao 《International Journal of Biomathematics》 2017年第1期45-76,共32页
In this paper, we have considered a delayed stage-structured diffusive prey-predator model, in which predator is assumed to undergo exploitation. By using the theory of partial functional differential equations, the l... In this paper, we have considered a delayed stage-structured diffusive prey-predator model, in which predator is assumed to undergo exploitation. By using the theory of partial functional differential equations, the local stability of an interior equilibrium is established and the existence of Hopf bifurcations at the interior equilibrium is also discussed. By applying the normal form and the center manifold theory, an explicit algorithm to determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived. Finally, the complex dynamics are obtained and numerical simulations substantiate the analytical results. 展开更多
关键词 STABILITY Hopf bifurcation delay.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部