This paper presents a novel LMI criterion for electric power system stability with multiple time-delays.Initially,the linear time-invariant model of the power system with multiple delays is constructed,subsequently,th...This paper presents a novel LMI criterion for electric power system stability with multiple time-delays.Initially,the linear time-invariant model of the power system with multiple delays is constructed,subsequently,the former criteria and the novel criterion of this paper are demonstrated in this paper,and the novel criterion is fully proved according to Lyapunov direct method.Specifically,the proposed criterion utilizes a properly simplified Lyapunov-Krasovskii functional,and no free-weighting matrix is introduced in the formation of new criterion,as a consequence,the calculation efficiency is remarkably enhanced.A typical second-order delay system,a single-generator-infinite-bus system and the WSCC 3-generator-9-bus delay system are taken to validate the effectiveness and efficiency enhancement of the proposed criterion.The numerical results indicate that the criterion of this paper can generate the same stability margin with the former ones.Further,the numerical results also verify that the proposed criterion’s efficiency is substantially boosted and calculation time is greatly curtailed.展开更多
This paper focuses on the stability testing of fractional-delay systems. It begins with a brief introduction of a recently reportedalgorithm, a detailed demonstration of a failure in applications of the algorithm and ...This paper focuses on the stability testing of fractional-delay systems. It begins with a brief introduction of a recently reportedalgorithm, a detailed demonstration of a failure in applications of the algorithm and the key points behind the failure. Then,it presents a criterion via integration, in terms of the characteristic function of the fractional-delay system directly, for testingwhether the characteristic function has roots with negative real parts only or not. As two applications of the proposed criterion,an algorithm for calculating the rightmost characteristic root and an algorithm for determining the stability switches, are proposed.The illustrative examples show that the algorithms work effectively in the stability testing of fractional-delay systems.展开更多
This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not o...This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.51277128,51377117)China Southern Power Grid Science and Technology Projects(Grant No.K-ZD2012-006)
文摘This paper presents a novel LMI criterion for electric power system stability with multiple time-delays.Initially,the linear time-invariant model of the power system with multiple delays is constructed,subsequently,the former criteria and the novel criterion of this paper are demonstrated in this paper,and the novel criterion is fully proved according to Lyapunov direct method.Specifically,the proposed criterion utilizes a properly simplified Lyapunov-Krasovskii functional,and no free-weighting matrix is introduced in the formation of new criterion,as a consequence,the calculation efficiency is remarkably enhanced.A typical second-order delay system,a single-generator-infinite-bus system and the WSCC 3-generator-9-bus delay system are taken to validate the effectiveness and efficiency enhancement of the proposed criterion.The numerical results indicate that the criterion of this paper can generate the same stability margin with the former ones.Further,the numerical results also verify that the proposed criterion’s efficiency is substantially boosted and calculation time is greatly curtailed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10825207 and 11032009)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0968)
文摘This paper focuses on the stability testing of fractional-delay systems. It begins with a brief introduction of a recently reportedalgorithm, a detailed demonstration of a failure in applications of the algorithm and the key points behind the failure. Then,it presents a criterion via integration, in terms of the characteristic function of the fractional-delay system directly, for testingwhether the characteristic function has roots with negative real parts only or not. As two applications of the proposed criterion,an algorithm for calculating the rightmost characteristic root and an algorithm for determining the stability switches, are proposed.The illustrative examples show that the algorithms work effectively in the stability testing of fractional-delay systems.
基金This work was supported by National'Science Foundation for Distinguished Young Scholars under Grant No. 10825207, and in part by Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200430.
文摘This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.