The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the...The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.展开更多
The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components...The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.展开更多
This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMI...This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.展开更多
For the uncertain continuous-time systems with input time-delay that widely exist in the production processes, we can get the existent conditions for the guaranteed cost control of these systems by using the Lyapunov ...For the uncertain continuous-time systems with input time-delay that widely exist in the production processes, we can get the existent conditions for the guaranteed cost control of these systems by using the Lyapunov stability theory, linear matrix inequalities theory and quadratic cost criterion. We can achieve the guaranteed cost control of this system by solving a matrix inequality. A state feed back guaranteed cost control law can be constructed by solving certain parameter-dependent Riccati matrix equation.展开更多
In this paper, the Lotka-Volterra competition system with discrete and distributed time delays is considered. By analyzing the characteristic equation of the linearized system, the local asymptotic stability of the po...In this paper, the Lotka-Volterra competition system with discrete and distributed time delays is considered. By analyzing the characteristic equation of the linearized system, the local asymptotic stability of the positive equilibrium is investigated. Moreover, we discover the delays don't effect the stability of the equilibrium in the delay system. Finally, we can conclude that the positive equilibrium is global asymptotically stable in the delay system.展开更多
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often ...Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.展开更多
The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
This paper presents a novel LMI criterion for electric power system stability with multiple time-delays.Initially,the linear time-invariant model of the power system with multiple delays is constructed,subsequently,th...This paper presents a novel LMI criterion for electric power system stability with multiple time-delays.Initially,the linear time-invariant model of the power system with multiple delays is constructed,subsequently,the former criteria and the novel criterion of this paper are demonstrated in this paper,and the novel criterion is fully proved according to Lyapunov direct method.Specifically,the proposed criterion utilizes a properly simplified Lyapunov-Krasovskii functional,and no free-weighting matrix is introduced in the formation of new criterion,as a consequence,the calculation efficiency is remarkably enhanced.A typical second-order delay system,a single-generator-infinite-bus system and the WSCC 3-generator-9-bus delay system are taken to validate the effectiveness and efficiency enhancement of the proposed criterion.The numerical results indicate that the criterion of this paper can generate the same stability margin with the former ones.Further,the numerical results also verify that the proposed criterion’s efficiency is substantially boosted and calculation time is greatly curtailed.展开更多
This paper investigates the stability of impulsive linear hybrid systems with time delay.And a number of delay-independent/delay-dependent stability criteria are obtained by using Lyapunovfunctions or Lyapunov functio...This paper investigates the stability of impulsive linear hybrid systems with time delay.And a number of delay-independent/delay-dependent stability criteria are obtained by using Lyapunovfunctions or Lyapunov functionals.Two examples are also presented to illustrate the effectiveness ofthe obtained results or to compare with the existing results.展开更多
This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of...This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of coordinate transformation and orthogonal decomposition of vector fields.Then,based on the equivalent form,some delay-dependent results are derived for the stability analysis of the systems by constructing a novel Lyapunov functional.Thirdly,the authors use the equivalent form and the obtained stability results to investigate the H_∞ control problem for a class of nonhnear time-delay control systems,and present a control design procedure.Finally,an illustrative example is given to show the effectiveness of the results obtained in this paper.It is shown that the main results of this paper are easier to check than some existing ones,and have less conservatism.展开更多
This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage funct...This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage function. Then based on the Razumikhin stability theorem, a sufficient condition is proposed for the asymptotically stability of the closed-loop system. Finally, the authors investigate the case that there are time-invariant uncertainties belonging to some convex bounded polytypic domain and an L2 disturbance attenuation control law is proposed. Study of illustrative example with simulation shows that the presented method in this paper works very well in the disturbance attenuation of time-delay Hamiltonian systems.展开更多
This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and constru...This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and construction of an appropriate type of Lyapunov functional. The stability criteria derived from this method have less conservatism than some existing ones. Numerical examples are given to illustrate the effectiveness of the orooosed method.展开更多
This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not o...This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.展开更多
In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the ...In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.展开更多
This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in ter...This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.展开更多
基金The National Natural Science Foundation of China(No.60874030,60574006,60404006)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125)
文摘The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.
文摘The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.
文摘For the uncertain continuous-time systems with input time-delay that widely exist in the production processes, we can get the existent conditions for the guaranteed cost control of these systems by using the Lyapunov stability theory, linear matrix inequalities theory and quadratic cost criterion. We can achieve the guaranteed cost control of this system by solving a matrix inequality. A state feed back guaranteed cost control law can be constructed by solving certain parameter-dependent Riccati matrix equation.
基金the Education Foundation of Henan Province(07110005)
文摘In this paper, the Lotka-Volterra competition system with discrete and distributed time delays is considered. By analyzing the characteristic equation of the linearized system, the local asymptotic stability of the positive equilibrium is investigated. Moreover, we discover the delays don't effect the stability of the equilibrium in the delay system. Finally, we can conclude that the positive equilibrium is global asymptotically stable in the delay system.
基金supported by National Natural Science Foundation of China under Nos. 10702023 and 10832006China Post-doctoral Special Science Foundation No. 200801020+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2007110020110supported in part by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences
文摘Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
基金supported by National Natural Science Foundation of China(Grant Nos.51277128,51377117)China Southern Power Grid Science and Technology Projects(Grant No.K-ZD2012-006)
文摘This paper presents a novel LMI criterion for electric power system stability with multiple time-delays.Initially,the linear time-invariant model of the power system with multiple delays is constructed,subsequently,the former criteria and the novel criterion of this paper are demonstrated in this paper,and the novel criterion is fully proved according to Lyapunov direct method.Specifically,the proposed criterion utilizes a properly simplified Lyapunov-Krasovskii functional,and no free-weighting matrix is introduced in the formation of new criterion,as a consequence,the calculation efficiency is remarkably enhanced.A typical second-order delay system,a single-generator-infinite-bus system and the WSCC 3-generator-9-bus delay system are taken to validate the effectiveness and efficiency enhancement of the proposed criterion.The numerical results indicate that the criterion of this paper can generate the same stability margin with the former ones.Further,the numerical results also verify that the proposed criterion’s efficiency is substantially boosted and calculation time is greatly curtailed.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10926114, 60874027, 60904027the "Chen Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation
文摘This paper investigates the stability of impulsive linear hybrid systems with time delay.And a number of delay-independent/delay-dependent stability criteria are obtained by using Lyapunovfunctions or Lyapunov functionals.Two examples are also presented to illustrate the effectiveness ofthe obtained results or to compare with the existing results.
基金supported by the National Natural Science Foundation of China under Grant Nos.G60774009,61074068,61034007,61374065,and 61304033the Research Fund for the Doctoral Program of Chinese Higher Education under Grant No.200804220028+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos.ZR2013ZEM006,ZR2011EL021,BS2011ZZ012,2013ZRB01873Colleges and Universities in Shandong Province Science and Technology Project under Grant Nos.J13LN37 and J12LN29
文摘This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of coordinate transformation and orthogonal decomposition of vector fields.Then,based on the equivalent form,some delay-dependent results are derived for the stability analysis of the systems by constructing a novel Lyapunov functional.Thirdly,the authors use the equivalent form and the obtained stability results to investigate the H_∞ control problem for a class of nonhnear time-delay control systems,and present a control design procedure.Finally,an illustrative example is given to show the effectiveness of the results obtained in this paper.It is shown that the main results of this paper are easier to check than some existing ones,and have less conservatism.
基金supported by the National Natural Science Foundation of China under Grant Nos.61074068, 61004013 and 61034007the Research Fund the Doctoral Program of Chinese Higher Education under Grant No.200804220028+2 种基金China Postdoctoral Science Foundation under Grant No.20100481300the Postdoctoral Innovation Program of Shandong Province under Grant No.200902014the Natural Science Foundation of Shandong Province under Grant No.ZB2010FM013
文摘This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage function. Then based on the Razumikhin stability theorem, a sufficient condition is proposed for the asymptotically stability of the closed-loop system. Finally, the authors investigate the case that there are time-invariant uncertainties belonging to some convex bounded polytypic domain and an L2 disturbance attenuation control law is proposed. Study of illustrative example with simulation shows that the presented method in this paper works very well in the disturbance attenuation of time-delay Hamiltonian systems.
基金supported by National Nature Science Foundation of China under Grant Nos.60174032,61004019the Key Project of Science&Technology Commission of Shanghai under Grant No.10JC140500
文摘This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and construction of an appropriate type of Lyapunov functional. The stability criteria derived from this method have less conservatism than some existing ones. Numerical examples are given to illustrate the effectiveness of the orooosed method.
基金This work was supported by National'Science Foundation for Distinguished Young Scholars under Grant No. 10825207, and in part by Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200430.
文摘This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.
基金Supported by Research Project of Hubei Provincial Department of Education under Grant No. Q20101609Foundation of Wuhan Textile University under Grant No. 105040
文摘In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.
基金the National High Technology Research and Development Program (863) of China(No. 2006AA05Z148)
文摘This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.