期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的极限工况下车辆的状态估计 被引量:4
1
作者 张凤娇 汪䶮 赵万忠 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第10期64-70,共7页
车辆稳定性控制关键状态变量的精确获取对于车辆主动安全控制极其关键,由于测量成本和难以测量状态量存在,现有绝大部分采用基于模型驱动的方法难以进行状态变量的估计。为此,提出了一种新的数据驱动的车辆极限工况下的状态估计方法,通... 车辆稳定性控制关键状态变量的精确获取对于车辆主动安全控制极其关键,由于测量成本和难以测量状态量存在,现有绝大部分采用基于模型驱动的方法难以进行状态变量的估计。为此,提出了一种新的数据驱动的车辆极限工况下的状态估计方法,通过引入深度长短时记忆神经网络(LSTM),利用样本数据训练LSTM网络生成时滞非线性预测模型,使模型在实现车辆状态估计的同时具有在线学习和动态更新能力。仿真实验结果表明:该方法的鲁棒性和估计精度优于传统扩展卡尔曼滤波算法。 展开更多
关键词 状态估计 数据驱动建模 长短记忆网络 时滞非线性预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部