The effect of time-odd fields of Skyrme interaction on neutron odd-even mass differences is studied in the framework of axially deformed Skyrme Hartree-Fock(DSHF)+BCS model. To this end, we take into account both the ...The effect of time-odd fields of Skyrme interaction on neutron odd-even mass differences is studied in the framework of axially deformed Skyrme Hartree-Fock(DSHF)+BCS model. To this end, we take into account both the time-even and time-odd fields to calculate the one-neutron and two-neutron separation energies and pairing gaps of semi-magic Ca, Ni, and Sn isotopic chains. In the calculations, a surface-type pairing interaction(IS pairing) and an isospin dependent contact pairing interaction(IS+IV pairing)are adopted on top of Skyrme interactions SLy4, SLy6 and Sk M*, respectively. We find that the time-odd fields have in general small effects on pairing gaps, but achieve better agreement with experimental data using SLy4 and Sly6 interactions, respectively.It is also shown that the calculations with IS+IV pairing reproduce the one-neutron separation energies of Sn isotopes better than those with the IS pairing interaction when the contributions of the time-odd fields are included.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10975116 and11275160)the Open Project Program of State Key Laboratory of Theoretical Physics+2 种基金Institute of Theoretical PhysicsChinese Academy of SciencesChina(Grant No.Y5KF141CJ1)
文摘The effect of time-odd fields of Skyrme interaction on neutron odd-even mass differences is studied in the framework of axially deformed Skyrme Hartree-Fock(DSHF)+BCS model. To this end, we take into account both the time-even and time-odd fields to calculate the one-neutron and two-neutron separation energies and pairing gaps of semi-magic Ca, Ni, and Sn isotopic chains. In the calculations, a surface-type pairing interaction(IS pairing) and an isospin dependent contact pairing interaction(IS+IV pairing)are adopted on top of Skyrme interactions SLy4, SLy6 and Sk M*, respectively. We find that the time-odd fields have in general small effects on pairing gaps, but achieve better agreement with experimental data using SLy4 and Sly6 interactions, respectively.It is also shown that the calculations with IS+IV pairing reproduce the one-neutron separation energies of Sn isotopes better than those with the IS pairing interaction when the contributions of the time-odd fields are included.