为掌握河北省服务区驶入量的时空分布规律,构建了时空地理加权回归(geographically and temporally weighted regression,GTWR)模型,揭示了服务区规模、服务区地理区位、关联地区土地利用、高速公路类型等因素在时间和空间上对服务区不...为掌握河北省服务区驶入量的时空分布规律,构建了时空地理加权回归(geographically and temporally weighted regression,GTWR)模型,揭示了服务区规模、服务区地理区位、关联地区土地利用、高速公路类型等因素在时间和空间上对服务区不同车型驶入量的影响。结果表明:时空地理加权回归模型的拟合结果显著优于最小二乘回归模型与地理加权回归模型;断面交通量对3种车型均具有促进作用,特别是在夏季高温地区服务区对于小型车驶入量促进作用显著;2~4 h车程范围内,风景名胜密度对小型车驶入量具有促进作用,且在旅游旺季及位于旅游业发达城市的服务区影响最显著;2~4 h车程范围内工商业型信息点(point of information,POI)密度对大中型车驶入量具有促进作用,特别是在货运高峰期及位于商贸发达城市的服务区促进作用显著;所属高速公路沿途资源型城市数量对服务区大型车驶入量具有显著促进作用,特别是在供暖季节。展开更多
文摘为掌握河北省服务区驶入量的时空分布规律,构建了时空地理加权回归(geographically and temporally weighted regression,GTWR)模型,揭示了服务区规模、服务区地理区位、关联地区土地利用、高速公路类型等因素在时间和空间上对服务区不同车型驶入量的影响。结果表明:时空地理加权回归模型的拟合结果显著优于最小二乘回归模型与地理加权回归模型;断面交通量对3种车型均具有促进作用,特别是在夏季高温地区服务区对于小型车驶入量促进作用显著;2~4 h车程范围内,风景名胜密度对小型车驶入量具有促进作用,且在旅游旺季及位于旅游业发达城市的服务区影响最显著;2~4 h车程范围内工商业型信息点(point of information,POI)密度对大中型车驶入量具有促进作用,特别是在货运高峰期及位于商贸发达城市的服务区促进作用显著;所属高速公路沿途资源型城市数量对服务区大型车驶入量具有显著促进作用,特别是在供暖季节。