将车路协同系统中车辆的位置估计问题转化为时空图模型构建与优化问题,提出一种时空图优化协同定位(STGO-CL)方法。其中,感知区域中不同时刻的车辆位置构成图模型中的节点;车端与路端通过融合高精地图计算出来的车辆绝对位置与相对位置...将车路协同系统中车辆的位置估计问题转化为时空图模型构建与优化问题,提出一种时空图优化协同定位(STGO-CL)方法。其中,感知区域中不同时刻的车辆位置构成图模型中的节点;车端与路端通过融合高精地图计算出来的车辆绝对位置与相对位置构成图模型的边,并加入时延补偿约束。在求解过程中采用Levenberg-Marquardt (LM)法求解目标函数实现对感知区域中的车辆位置最优状态估计,实现车-路-图协同定位。利用CARLA建立直道和弯道仿真实验场景以验证算法,结果表明:时空图优化协同定位方法平均定位误差为0.29 m,定位性能较GPS或路侧单元(Road side unit, RSU)单独定位分别提高了97.1%和55.4%,较不融合高精地图的时空图优化协同定位方法提高了42.0%。在时延补偿上,可将200 ms时延下的定位性能提高67.0%。本文利用时空图模型实现车-路-图协同定位可有效提升车路协同系统的环境感知性能。展开更多
文摘将车路协同系统中车辆的位置估计问题转化为时空图模型构建与优化问题,提出一种时空图优化协同定位(STGO-CL)方法。其中,感知区域中不同时刻的车辆位置构成图模型中的节点;车端与路端通过融合高精地图计算出来的车辆绝对位置与相对位置构成图模型的边,并加入时延补偿约束。在求解过程中采用Levenberg-Marquardt (LM)法求解目标函数实现对感知区域中的车辆位置最优状态估计,实现车-路-图协同定位。利用CARLA建立直道和弯道仿真实验场景以验证算法,结果表明:时空图优化协同定位方法平均定位误差为0.29 m,定位性能较GPS或路侧单元(Road side unit, RSU)单独定位分别提高了97.1%和55.4%,较不融合高精地图的时空图优化协同定位方法提高了42.0%。在时延补偿上,可将200 ms时延下的定位性能提高67.0%。本文利用时空图模型实现车-路-图协同定位可有效提升车路协同系统的环境感知性能。