期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
结合速度控制的时空图网络行人轨迹预测模型 被引量:3
1
作者 王海峰 桑海峰 +1 位作者 王金玉 陈旺兴 《电子测量与仪器学报》 CSCD 北大核心 2022年第5期146-154,共9页
行人轨迹预测中最重要的任务是建立行人轨迹交互模型,针对在模型中缺乏关于时间和速度等信息的建模,提出了一种结合速度控制的时空图网络算法来建立行人交互模型并对轨迹进行预测.整体模型采用条件生成对抗网络架构,其中采用速度预测模... 行人轨迹预测中最重要的任务是建立行人轨迹交互模型,针对在模型中缺乏关于时间和速度等信息的建模,提出了一种结合速度控制的时空图网络算法来建立行人交互模型并对轨迹进行预测.整体模型采用条件生成对抗网络架构,其中采用速度预测模块预测行人未来速度并作为条件生成对抗网络的控制条件,显式地将速度信息引入行人轨迹预测,避免较大偏差速度对轨迹的影响。在生成器中设计了基于图卷积注意力机制的时空信息融合模块,在提取行人轨迹序列运动特征并关注其空间上相互作用关系的同时,显式地编码行人序列的时间相关性。最后,将结合时空信息和速度信息的轨迹交互特征解码,完成轨迹的预测。此外,考虑到现有评价方法的不足,采用平均碰撞次数作为轨迹合理性的评判。在公开数据集ETH和UCY上进行验证,实验结果表明,该文所提出的算法能更好地完成行人轨迹预测,平均位移误差为0.40 m和最终位移误差为0.79 m。 展开更多
关键词 行人轨迹预测 生成对抗网络 速度控制 时空图网络 平均碰撞次数
下载PDF
基于时空图网络的高速公路交通流预测方法
2
作者 崔书恒 刘雅妮 陈芳 《物流科技》 2023年第4期89-91,96,共4页
高速公路的路况问题日益,这使得人们越来越重视对高速公路交通运行状态的评估与预测。高速公路不同于普通公路,是一段全封闭的道路,车流量大和行车速度快是其最大的特点。因此,如何利用交通大数据来挖掘分析交通流的特征,并通过智能化... 高速公路的路况问题日益,这使得人们越来越重视对高速公路交通运行状态的评估与预测。高速公路不同于普通公路,是一段全封闭的道路,车流量大和行车速度快是其最大的特点。因此,如何利用交通大数据来挖掘分析交通流的特征,并通过智能化的手段科学合理地预测出未来时间交通流的变化情况已经成为智能交通领域的一个研究热点。文章正是在智能交通领域下,深入研究基于时空图网络的高速公路路网交通流预测方法,对空间依赖性和时间依赖性分别进行建模,建立了一个长短时交通流预测模型去评估高速路况,并取得了很好的效果。 展开更多
关键词 高速公路 交通流预测 时空图网络
下载PDF
基于时空图卷积神经网络的强迫振荡定位与传播预测 被引量:2
3
作者 冯双 彭祥佳 +5 位作者 陈佳宁 陆友文 陈力 洪希 雷家兴 汤奕 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1298-1309,I0005,共13页
振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根... 振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根据节点特征和拓扑信息构建图数据,考虑到强迫振荡传播的快速性,通过切比雪夫多项式扩大节点空间感受野,提取振荡空间特征。同时,利用门控循环单元网络提取多个节点振荡数据的时序关联,通过时空图卷积单元融合空间和时序特征。然后,将定位与传播预测分别建模为分类和回归问题,训练时空图卷积神经网络模型。算例分析表明,所提方法具有更高的准确率,且在噪声和部分节点数据缺失的情况下依然具有较好的性能。 展开更多
关键词 强迫振荡 振荡源定位 振荡传播 时空图卷积神经网络
下载PDF
基于时空图神经网络的应用层DDoS攻击检测方法
4
作者 王健 陈琳 +1 位作者 王凯崙 刘吉强 《信息网络安全》 CSCD 北大核心 2024年第4期509-519,共11页
分布式拒绝服务(Distributed Denial of Service,DDoS)攻击已经成为网络安全的主要威胁之一,其中应用层DDoS攻击是主要的攻击手段。应用层DDoS攻击是针对具体应用服务的攻击,其在网络层行为表现正常,传统安全设备无法有效抵御。同时,现... 分布式拒绝服务(Distributed Denial of Service,DDoS)攻击已经成为网络安全的主要威胁之一,其中应用层DDoS攻击是主要的攻击手段。应用层DDoS攻击是针对具体应用服务的攻击,其在网络层行为表现正常,传统安全设备无法有效抵御。同时,现有的针对应用层DDoS攻击的检测方法检测能力不足,难以适应攻击模式的变化。为此,文章提出一种基于时空图神经网络(Spatio-Temporal Graph Neural Network,STGNN)的应用层DDoS攻击检测方法,利用应用层服务的特征,从应用层数据和应用层协议交互信息出发,引入注意力机制并结合多个GraphSAGE层,学习不同时间窗口下的实体交互模式,进而计算检测流量与正常流量的偏差,完成攻击检测。该方法仅利用时间、源IP、目的IP、通信频率、平均数据包大小5维数据便可有效识别应用层DDoS攻击。由实验结果可知,该方法在攻击样本数量较少的情况下,与对比方法相比可获得较高的Recall和F1分数。 展开更多
关键词 DDOS攻击 时空图神经网络 异常检测 注意力机制
下载PDF
基于全局时空图卷积神经网络的城市交通流量预测
5
作者 王佳昊 黎文斌 +1 位作者 郭仕尧 向平 《计算机科学》 CSCD 北大核心 2024年第S02期534-542,共9页
交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现... 交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现有方法对捕获交通数据的时空依赖关系有一定的局限。为此,文中提出了一种基于全局时空图卷积神经网络(Global Spatial-Temporal Graph Convolutional Network,GSTGCN)的深度学习模型,用于解决在城市交通速度预测的局限性。该模型中存在3种时空分量,可相应地对交通数据中的近期、天周期、周周期这3种不同的时空相关性进行建模。每个时空分量都由时间模块和空间模块组成,时间模块为了更好地获取交通数据的时间维度信息,引入了Informer机制以自适应地分配特征权重。空间模型为了更好地获取交通数据的空间关系,引入了图卷积神经网络来提取交通数据的局部和全局空间信息。在两个不同的真实数据集上进行了测试,结果表明所提出的GSTGCN优于最先进的基线模型。 展开更多
关键词 交通流量预测 全局时空图卷积网络 时空依赖性
下载PDF
交通速度预测时空图卷积网络及其FPGA实现研究
6
作者 谭会生 杨威 严舒琪 《电子测量技术》 北大核心 2024年第18期108-119,共12页
时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交... 时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交通速度预测STGCN模型基础上,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法。首先,通过轻量化裁剪和预测数据位宽的精确选择,对交通速度预测STGCN进行了模型优化,以降低计算复杂度和资源消耗,并经过Python仿真验证其可行性。其次,通过采用流水线、并行计算和数据交替流水存取等组合优化策略,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法,以提升系统计算速度。最后,使用Verilog编程对交通速度预测STGCN进行了FPGA的实现仿真和硬件测试。利用PeMSD7(M)数据集进行实验,结果显示FPGA实现单数据交通速度预测的时间为355.5μs,相比CPU、GPU平台及FPGA设计方案1对比,其处理速度最大分别提高了25.9倍、6.7倍和3.5倍,证明了交通速度预测STGCN的FPGA实现结构组合优化方法,在保持预测准确性的前提下可较大幅度的提升系统处理速度。 展开更多
关键词 交通速度预测 时空图卷积网络 FPGA 硬件实现结构 流水线 并行结构
下载PDF
时空图卷积网络的骨架识别硬件加速器设计
7
作者 谭会生 严舒琪 杨威 《电子测量技术》 北大核心 2024年第11期36-43,共8页
随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可... 随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可编程门阵列(FPGA),设计开发了一个基于时空图卷积神经网络的骨架识别硬件加速器。通过对原网络模型进行结构优化与数据量化,减少了FPGA实现约75%的计算量;利用邻接矩阵稀疏性的特点,提出了一种稀疏性矩阵乘加运算的优化方法,减少了约60%的乘法器资源消耗。经过对人体骨架识别实验验证,结果表明,在时钟频率100 MHz下,相较于CPU,FPGA加速ST-GCN单元,加速比达到30.53;FPGA加速人体骨架识别,加速比达到6.86。 展开更多
关键词 人体骨架识别 时空图卷积神经网络(ST-GCN) 硬件加速器 现场可编程门阵列(FPGA) 稀疏矩阵乘加运算硬件优化
下载PDF
基于改进时空图卷积网络的人员交互行为识别 被引量:1
8
作者 雷静思 刘双广 +1 位作者 刘乔寿 王祥雪 《计算机应用与软件》 北大核心 2024年第4期151-158,共8页
针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提... 针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提高特征复用率;设计一种增强时空图卷积网络(EST-GCN)单元提高网络对关节点之间的信息表征能力;引入一种运动特征因子衡量肢体不同关节的重要程度,提高模型识别效果。在Kinetics数据集和办案区场景数据集上的实验结果表明,所提出方法在识别效果上具有一定优势,且该方法在模型复杂度及运行效率上具有很好的竞争力。 展开更多
关键词 交互行为 时空图卷积网络 骨架数据 密集
下载PDF
基于时空图卷积网络和自注意机制的频率稳定性预测
9
作者 杜东来 韩松 荣娜 《电工技术学报》 EI CSCD 北大核心 2024年第16期4985-4995,共11页
针对传统数据驱动预测方法对电力系统频率稳定性预测的时空特性利用不充分、新拓扑下泛化能力差和可解释性较弱的问题,该文提出了一种基于自注意力机制和时空图卷积网络(STGCN)的频率稳定性预测方法。STGCN预测方法利用一维时间卷积层... 针对传统数据驱动预测方法对电力系统频率稳定性预测的时空特性利用不充分、新拓扑下泛化能力差和可解释性较弱的问题,该文提出了一种基于自注意力机制和时空图卷积网络(STGCN)的频率稳定性预测方法。STGCN预测方法利用一维时间卷积层提取系统时间信息,利用切比雪夫图卷积通过近似拉普拉斯矩阵的多项式函数执行图卷积操作,从而捕获各母线及其邻居的拓扑结构信息;然后,采用基于自注意力机制的可微分图池化层来获得各母线注意力得分以对预测模型的决策过程进行可解释性分析,该分层池化策略允许模型尽可能地保留有价值的节点特征,并根据保留特征和动态拓扑有效分配节点以提高模型的泛化能力与鲁棒性;最后,在修改的新英格兰39节点系统和ACTIVSg500节点系统上的测试验证了所提方法的有效性。与传统方法相比,该文所提STGCN具有更高的预测精度、更好的鲁棒性和泛化能力。同时,该方法可以提供系统内各母线对预测结果的具体影响。 展开更多
关键词 频率稳定性预测 深度学习 时空图神经网络 自注意力机制 可解释性
下载PDF
基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法
10
作者 孟衡 张涛 +3 位作者 王金 张晋源 李达 时光蕤 《电网技术》 EI CSCD 北大核心 2024年第10期4297-4305,I0113-I0117,I0112,共15页
深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系... 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。 展开更多
关键词 多节点负荷预测 多尺度时空图卷积神经网络 属性增强 TRANSFORMER
下载PDF
基于时空图注意力网络的服务机器人动态避障
11
作者 杜海军 余粟 《计算机工程》 CAS CSCD 北大核心 2024年第2期105-112,共8页
为了解决服务机器人在具有自主决策能力的密集人群中容易发生碰撞、假死和路径不自然等问题,在深度强化学习的框架下提出基于时空图注意力网络的服务机器人动态避障算法。时空图注意力网络作为邻近策略优化(PPO)算法的决策函数,首先采... 为了解决服务机器人在具有自主决策能力的密集人群中容易发生碰撞、假死和路径不自然等问题,在深度强化学习的框架下提出基于时空图注意力网络的服务机器人动态避障算法。时空图注意力网络作为邻近策略优化(PPO)算法的决策函数,首先采用门控循环单元控制机器人对环境的记忆和遗忘程度,提取环境的时间特征,使其对行人运动趋势有一定的预测作用;然后采用图注意力网络获取机器人和行人在空间上的隐式交互特征,使机器人能寻找无碰撞路径;最后在PPO算法中对时空图注意力网络进行训练,使得机器人在人群中完成无碰撞导航任务。在人均2.5 m^(2)的动态封闭环境中对算法进行实验验证,结果表明,与非学习型的动态窗口算法相比,该算法导航成功率提高71个百分点,与基于学习型的DSRNN-RL算法相比,该算法导航成功率提高3个百分点同时导航路径更短。Gazebo环境下的实时导航测试结果表明,所提算法的平均推理时间为21.90 ms,可以满足实时导航的要求。 展开更多
关键词 服务机器人 动态避障 深度强化学习 时空图注意力网络 实时导航
下载PDF
基于时空关联的时空图卷积神经网络城市轨道交通进站客流预测
12
作者 王润祺 郝妍熙 +2 位作者 胡华 方勇 刘志钢 《城市轨道交通研究》 北大核心 2024年第9期91-96,共6页
[目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。... [目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。[方法]首先,通过切比雪夫图卷积网络捕捉超大规模城市轨道交通网络的空间相关性,借助门控循环单元挖掘多时空关联特征下客流的时间相关性;然后,分析待预测车站历史客流数据相关性及OD(起讫点)客流数据相关性,以深入提取时空相关性;最后,结合客流时空关联特征建立STGCN模型。[结果及结论]以上海地铁江苏路站为例,进行短时进站客流预测,结果表明采用时空关联特征参数的预测结果较未加入特征参数的预测精度提高了16%,预测效果较优。 展开更多
关键词 城市轨道交通 短时进站客流预测 时空关联性 时空图卷积神经网络
下载PDF
基于时空图神经网络的异构交通参与者风险预测
13
作者 孟相浩 牛凌 +2 位作者 席军强 陈丹妮 吕超 《汽车工程》 EI CSCD 北大核心 2024年第9期1537-1545,共9页
有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者... 有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者之间不同的交互关系及未来风险状态。本文提出了一种基于时空图卷积神经网络的异构多目标风险预测方法Risk-STGCN,通过图卷积及时间卷积分别对单帧场景图信息与时序信息进行学习,结合多层时序预测网络对多目标风险指标TTC进行预测。在开源BLVD与实车自采数据集上进行了训练验证,并与常用序列预测模型进行对比。实验结果表明,所提模型在不同数据集上的平均TTC误差均在0.95 s以下,多实验指标均优于文中所提到的其他模型,具有良好的鲁棒性,同时提升了复杂交通场景下风险预测的可解释性。 展开更多
关键词 智能汽车 多交通参与者 交互表征 风险预测 时空图神经网络
下载PDF
基于聚合时空图卷积网络的多风场超短期风速预测
14
作者 徐辰晓 崔承刚 +3 位作者 郭为民 杨宁 刘备 孟青叶 《电源学报》 CSCD 北大核心 2024年第4期133-142,共10页
在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相... 在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相关系数建立连通图和权重矩阵。其次,依赖风场风速的时间动态特征,采用改进并列式卷积结构获取同一风场下多时间段的风速序列相关性。再次,利用风场风速的空间相关性和延时效应,采用二阶聚合方法将不同区域内风速的时空特征聚合。最后,经某区域风场数据验证表明,在0~4 h预测尺度下该方法在多风场超短期风速预测中具有提取时空特征并提升预测性能的效果。 展开更多
关键词 风速预测 聚合时空图卷积网络 时空相关性
下载PDF
基于异质时空图注意力网络的铁路车站货运量预测
15
作者 张海山 王文斌 周瑾 《铁道货运》 2024年第6期52-59,共8页
车站货运量短期预测,有助于车站和调度部门提前了解运量变化趋势,调整运输资源安排,提高运输组织效率。选取国家能源集团铁路货运车站作为研究对象,以车站为图网络节点,将车站物理相邻关系、运单需求关系和列车开行关系抽象成节点之间... 车站货运量短期预测,有助于车站和调度部门提前了解运量变化趋势,调整运输资源安排,提高运输组织效率。选取国家能源集团铁路货运车站作为研究对象,以车站为图网络节点,将车站物理相邻关系、运单需求关系和列车开行关系抽象成节点之间的异质边,构建基于异质时空图注意力网络的货运量预测模型。模型在单个图网络中利用图注意力机制捕捉车站与其邻居之间的空间关联性,通过异质节点特征融合机制实现3个子图间的信息融合,处理得到的空间特征输入循环门控单元以更新时序特征。选取国家能源集团铁路各车站实际货运量数据进行实验,结果证明提出的模型预测效果更加准确,能够有效辅助调度统计工作。 展开更多
关键词 重载铁路 车站货运量 时空图注意力网络 时序预测 注意力机制
下载PDF
基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型
16
作者 雷天亮 吉立新 +2 位作者 王庚润 刘树新 巫岚 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3741-3750,共10页
用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了... 用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型(Expandable Self-Attention Spatio-Temporal Graph Convolutional Neural Networks,ESAST-GCNN),该模型采用时空图卷积神经网络方式,深度挖掘时序特征与空间特征关系,并进行预测与拓展,结合自注意力机制获取用户轨迹特征向量内部相关性,最终根据该特征向量进行用户轨迹身份识别.在两个真实数据集上进行测试后发现,ESAST-GCNN相较于TULER-GRU(TUL via Embedding and RNN)在Geolife与Gowalla中准确率分别提高了13.95%、10.63%,实验结果表明ESAST-GCNN优于其他模型,识别效果更好,适用范围更广. 展开更多
关键词 用户轨迹识别 时空图卷积神经网络 自注意力机制 深度学习 时空序列
下载PDF
基于时空图卷积网络的交通事故风险预测研究 被引量:4
17
作者 王庆荣 魏怡萌 +1 位作者 朱昌锋 田可可 《计算机工程》 CAS CSCD 北大核心 2022年第11期22-29,共8页
交通事故的预测是通过对过去路段发生的交通事故进行分析,在综合考虑影响交通事故的相关因素后,对未来路段的交通事故发生状态进行预测。以往的大多数研究通常采用传统机器学习方法或单一深度学习模型预测法,利用网格化确定预测空间的单... 交通事故的预测是通过对过去路段发生的交通事故进行分析,在综合考虑影响交通事故的相关因素后,对未来路段的交通事故发生状态进行预测。以往的大多数研究通常采用传统机器学习方法或单一深度学习模型预测法,利用网格化确定预测空间的单位,忽略了影响交通事故的天气、路况等外部因素,导致模型的预测性能不佳。提出一种基于时空特性的城市交通事故风险预测模型,在模型中使用改进的时空图卷积网络,利用图卷积网络(GCN)提取空间相关特征,并加入批标准化层解决梯度消失爆炸问题。在时间维度上采用门控线性单元(GLU)实现一维卷积操作,提取时间相关特征,并将GCN和GLU组合成时空卷积模块提取时空相关特征,使用均方误差损失函数解决样本数据零膨胀问题。实验结果表明,与GLU、SDCAE和ConvLSTM模型相比,该模型的RMSE指标分别降低了28%、4.87%、4.19%,能有效捕获时空相关性,综合性能得到较大提升。 展开更多
关键词 深度学习 城市交通事故 时空图卷积网络 时空相关性 批标准化层
下载PDF
基于时空图神经网络的高速铁路车站短期客流预测方法 被引量:10
18
作者 何必胜 朱永俊 +1 位作者 陈路锋 闻克宇 《铁道学报》 EI CAS CSCD 北大核心 2022年第9期1-8,共8页
基于历史数据挖掘实现精准的高速铁路车站短期客流预测能有效支撑客运站工作组织的动态调整,提升铁路运输服务水平。考虑列车开行方案、车站关系对客流的影响,提出基于时空图神经网络的铁路车站短期到发客流预测方法,在空间卷积模块中,... 基于历史数据挖掘实现精准的高速铁路车站短期客流预测能有效支撑客运站工作组织的动态调整,提升铁路运输服务水平。考虑列车开行方案、车站关系对客流的影响,提出基于时空图神经网络的铁路车站短期到发客流预测方法,在空间卷积模块中,用关系图卷积融合铁路物理网络、基于列车开行方案的服务网络和车站关系网络以挖掘空间关联性,在时间注意力模块中用注意力机制获取时间关联特征,并用多层长短期记忆人工神经网络实现路网上多站的多步客流预测。选取京沪高速铁路沿线车站到发客流为研究对象,并对比不同步长下的短期到发客流预测效果,结果表明STGNN明显优于对比预测方法。 展开更多
关键词 高速铁路 客流预测 关系图卷积 时间注意力 时空图神经网络
下载PDF
多因子融合时空图神经网络的交通参数预测 被引量:1
19
作者 张建旭 金宏意 +1 位作者 胡帅 王雪芹 《重庆理工大学学报(自然科学)》 北大核心 2023年第8期185-193,共9页
针对路网级交通参数预测时空特性挖掘不足的问题,提出一种多因子融合时空图神经网络(MF-STGNN)。该模型从路网地理拓扑结构、通行能力和道路交通数据相关性3个角度挖掘路网的空间特征,再通过时间模块(GRU)提取时间特征。在多因子空间特... 针对路网级交通参数预测时空特性挖掘不足的问题,提出一种多因子融合时空图神经网络(MF-STGNN)。该模型从路网地理拓扑结构、通行能力和道路交通数据相关性3个角度挖掘路网的空间特征,再通过时间模块(GRU)提取时间特征。在多因子空间特征聚合模块(MF-GNN)中,构建了3个因子关联矩阵;将其中的通行能力关联矩阵C和交通数据关联矩阵D输入到基于频域的图卷积网络(GCN)中,将空间近邻矩阵A输入到图注意力网络(GAT)中,分别提取3种不同的空间特征,将3种特征通过通道注意力模型进行融合,通过GRU提取时间特征。使用重庆市渝北区部分区域浮动车数据集进行实验,结果表明:MF-STGNN能够更好地捕捉路网的时空特性,提高预测精度。 展开更多
关键词 因子关联矩阵 多因子融合时空图神经网络 图卷积网络 图注意力网络 门控循环单元
下载PDF
基于潜在特征的时空图卷积网络轨迹预测方法
20
作者 姚宝珍 吴粤隆 +3 位作者 荆治家 陈思轩 仲潜 刘振国 《交通运输研究》 2023年第6期12-20,共9页
为提高车辆轨迹预测精度,提出一种基于潜在特征的时空图卷积网络轨迹预测方法CRSTGCN。首先,该方法特别添加了一个时间上更早、更长的历史轨迹作为输入,并基于该输入建立了潜在特征编码层。然后,CR-STGCN将该潜在特征编码层编码的潜在... 为提高车辆轨迹预测精度,提出一种基于潜在特征的时空图卷积网络轨迹预测方法CRSTGCN。首先,该方法特别添加了一个时间上更早、更长的历史轨迹作为输入,并基于该输入建立了潜在特征编码层。然后,CR-STGCN将该潜在特征编码层编码的潜在特征与时空图卷积编码的机动性与动力性特征拼接融合,并采用两层门控循环单元(Gate Recurrent Unit,GRU)解码出预测轨迹。最后,将采用时空图卷积编码和两层GRU解码的预测轨迹模型STGCN与CR-STGCN在NGSIM数据集上进行对比。结果表明,CR-STGCN在不同机动类型、交通密度场景下的预测精度均优于STGCN,证明了这一方法应用于车辆轨迹预测的有效性,为轨迹预测特征选取提供了新思路。 展开更多
关键词 智能交通 时空图卷积网络 轨迹预测 潜在特征 交通密度
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部