为掌握河北省服务区驶入量的时空分布规律,构建了时空地理加权回归(geographically and temporally weighted regression,GTWR)模型,揭示了服务区规模、服务区地理区位、关联地区土地利用、高速公路类型等因素在时间和空间上对服务区不...为掌握河北省服务区驶入量的时空分布规律,构建了时空地理加权回归(geographically and temporally weighted regression,GTWR)模型,揭示了服务区规模、服务区地理区位、关联地区土地利用、高速公路类型等因素在时间和空间上对服务区不同车型驶入量的影响。结果表明:时空地理加权回归模型的拟合结果显著优于最小二乘回归模型与地理加权回归模型;断面交通量对3种车型均具有促进作用,特别是在夏季高温地区服务区对于小型车驶入量促进作用显著;2~4 h车程范围内,风景名胜密度对小型车驶入量具有促进作用,且在旅游旺季及位于旅游业发达城市的服务区影响最显著;2~4 h车程范围内工商业型信息点(point of information,POI)密度对大中型车驶入量具有促进作用,特别是在货运高峰期及位于商贸发达城市的服务区促进作用显著;所属高速公路沿途资源型城市数量对服务区大型车驶入量具有显著促进作用,特别是在供暖季节。展开更多
为更好地调度出租车运力,缓解热点载客区域出租车供需不平衡现象,需探究出租车需求的时空分布特征及其影响因素。鉴于此,基于出租车GPS数据、计价器数据、公共交通刷卡数据和兴趣点(Point of Interesting,POI)数据等多源异构数据,结合...为更好地调度出租车运力,缓解热点载客区域出租车供需不平衡现象,需探究出租车需求的时空分布特征及其影响因素。鉴于此,基于出租车GPS数据、计价器数据、公共交通刷卡数据和兴趣点(Point of Interesting,POI)数据等多源异构数据,结合相关性分析法对区域出租车出行需求影响因素进行筛选,建立多维度的影响因素集,构建基于地理加权回归的区域出租车出行需求影响模型。以北京市1 398个交通小区的数据为例,分析不同时空条件下各影响因素对出租车出行需求的影响程度。结果表明:出租车出行需求空间分布具有空间集聚效应,影响因素对出租车需求的影响程度具有空间非稳态特征;各中心区域住宅密度、周边且公司密集区域办公密度及城市外围区域的休闲娱乐服务密度对出租车出行需求有很强的正影响;城市外围区域住宅密度、各中心区域办公密度与出租车出行需求呈负相关;非工作日休闲娱乐服务密度对出租车出行需求促进作用明显大于工作日;区域公共交通产生量对出租车出行需求的影响早、晚高峰差异显著。通过模型对比分析可知,所建模型具有较高的精度,适用于解释各影响因素对出租车出行需求影响的时空差异性。展开更多
为了更好地利用模型对湖北省肾综合征出血热(Hemorrhagic fever with renal syndrome,HFRS)发病率数据的时间和空间分布进行拟合和预测,本文基于传统的时空地理加权回归模型(Geographically and Temporally Weighted Regression model,G...为了更好地利用模型对湖北省肾综合征出血热(Hemorrhagic fever with renal syndrome,HFRS)发病率数据的时间和空间分布进行拟合和预测,本文基于传统的时空地理加权回归模型(Geographically and Temporally Weighted Regression model,GTWR),引入时间序列中的季节性差分方法,同时采用空间自相关法优化模型中的带宽参数,构建了季节性差分时空地理加权回归模型(Seasonal Difference-Geographically and Temporally Weighted Regression model,SDGTWR)。研究结果表明,经过季节性差分优化的GTWR模型拟合精度要优于传统的GTWR模型及最小二乘法模型(OLS)和地理加权模型(GWR)方法。展开更多
文摘为掌握河北省服务区驶入量的时空分布规律,构建了时空地理加权回归(geographically and temporally weighted regression,GTWR)模型,揭示了服务区规模、服务区地理区位、关联地区土地利用、高速公路类型等因素在时间和空间上对服务区不同车型驶入量的影响。结果表明:时空地理加权回归模型的拟合结果显著优于最小二乘回归模型与地理加权回归模型;断面交通量对3种车型均具有促进作用,特别是在夏季高温地区服务区对于小型车驶入量促进作用显著;2~4 h车程范围内,风景名胜密度对小型车驶入量具有促进作用,且在旅游旺季及位于旅游业发达城市的服务区影响最显著;2~4 h车程范围内工商业型信息点(point of information,POI)密度对大中型车驶入量具有促进作用,特别是在货运高峰期及位于商贸发达城市的服务区促进作用显著;所属高速公路沿途资源型城市数量对服务区大型车驶入量具有显著促进作用,特别是在供暖季节。
文摘为更好地调度出租车运力,缓解热点载客区域出租车供需不平衡现象,需探究出租车需求的时空分布特征及其影响因素。鉴于此,基于出租车GPS数据、计价器数据、公共交通刷卡数据和兴趣点(Point of Interesting,POI)数据等多源异构数据,结合相关性分析法对区域出租车出行需求影响因素进行筛选,建立多维度的影响因素集,构建基于地理加权回归的区域出租车出行需求影响模型。以北京市1 398个交通小区的数据为例,分析不同时空条件下各影响因素对出租车出行需求的影响程度。结果表明:出租车出行需求空间分布具有空间集聚效应,影响因素对出租车需求的影响程度具有空间非稳态特征;各中心区域住宅密度、周边且公司密集区域办公密度及城市外围区域的休闲娱乐服务密度对出租车出行需求有很强的正影响;城市外围区域住宅密度、各中心区域办公密度与出租车出行需求呈负相关;非工作日休闲娱乐服务密度对出租车出行需求促进作用明显大于工作日;区域公共交通产生量对出租车出行需求的影响早、晚高峰差异显著。通过模型对比分析可知,所建模型具有较高的精度,适用于解释各影响因素对出租车出行需求影响的时空差异性。