Space-time spreading (STS) and orthogonal transmit diversity (OTD) are towtransmit diversity schemes proposed by cdma2000 standard. In this paper, performance comparisonanalysis of the two transmits diversity schemes ...Space-time spreading (STS) and orthogonal transmit diversity (OTD) are towtransmit diversity schemes proposed by cdma2000 standard. In this paper, performance comparisonanalysis of the two transmits diversity schemes in multipath channel under multiuser situation arecarried out. Link level simulation in forward link cdma2000 is performed in IMT-2000 channel.Performance analysis and simulation results show that the performance improvement provided STS overOTD decreases as the increase of propagation path number and decrease of the user number.展开更多
A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performe...A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performed jointly for the layers within the same group while the Decision Feedback Equalization (DFE) is performed for groups. Based on the assumption of QPSK modulation and the quasi-static flat fading channel, simulations are made to testify the performance of the proposed algorithm. The results show that the algorithm outperforms the original V-BLAST detection dramatically in Symbol Error Probability (SEP) per- formance. Specifically, Signal-to-Noise Ratio (SNR) improvement of 3.4dB is obtained for SEP of 10?2 (4×4 case), with a reasonable complexity maintained.展开更多
In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achi...In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achieve higher energy efficiency and lower delay of packet transmissions.We particularly address long sleeping intervals in low-duty-cycle networks by exploiting multi-path diversity.Specifically,we propose to employ an erasure-coding scheme to improve reliability.With respect to energy efficiency and delivery timeliness,we formulate the problem in optimal allocation of coded blocks over multiple paths,which is then proved to be NP-hard.We further propose a near-optimal algorithm to solve the allocation problem.Through extensive simulations,we evaluate the impact of network parameters and demonstrate the effectiveness of our proposal.展开更多
The paper investigated the performance of a solar chimney, by measuring the chimney air temperature and velocity. A short solar chimney prototype was designed and constructed at Botswana Technology Center. A wind turb...The paper investigated the performance of a solar chimney, by measuring the chimney air temperature and velocity. A short solar chimney prototype was designed and constructed at Botswana Technology Center. A wind turbine was installed to rotate a small DC generator. Temperatures and velocities were measured at different times of the day with thermocouples and hotwire anemometer, respectively. Irradiance was measured with pyranometer. A Delta-T data logger was used to store data at intervals of 30 s. Various graphs depicting the influence of irradiance on temperature, velocity and power have been plotted. Irradiance was found to affect the chimney temperature and subsequently affects chimney air velocity and power produced. Ambient air (wind) velocity was found to have influence on the performance of the solar chimney by increasing chimney air velocity.展开更多
Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological prote...Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological protection pattern of territorial space, which has important theoretical significance and application value. At present, most research on the identification, functional partitioning and pattern reconstruction of ecological space refers to the current ESFs and their structural information, which ignores the spatial-temporal dynamic nature of the comprehensive and dominant ESFs, and does not seriously consider the change simulation in the dominant ESFs of the future ecological space. This affects the rationality of constructing an ecological space protection pattern to some extent. In this study, we propose an ecological space delimitation method based on the dynamic change characteristics of the ESFs, realize the identification of the ecological space range in Qionglai City and solve the problem of ignoring the spatial-temporal changes of ESFs in current research. On this basis, we also apply the Markov-CA model to integrate the spatial-temporal change characteristics of the dominant ESFs, successfully realize the simulation of the spatial-temporal changes in the dominant ESFs in Qionglai City’s ecological space in 2025, find a suitable method for simulating ecological spatial-temporal changes and also provide a basis for constructing a reasonable ecological space protection pattern. This study finds that the comprehensive quantity of ESF and its annual rate of change in Qionglai City show obvious dynamics, which confirms the necessity of considering the dynamic characteristics of ESFs when identifying ecological space. The areas of ecological space in Qionglai city represent 98307 ha by using the ecological space identification method proposed in this study, which is consistent with the ecological spatial distribution in the local ecological civilization construction plan. This confirms the reliability of the ecological space identification method based on the dynamic characteristics of the ESFs. The results also show that the dominant ESFs in Qionglai City represented strong non-stationary characteristics during 2003–2019,which showed that we should fully consider the influence of the dynamics in the dominant ESFs on the future ESF pattern during the process of constructing the ecological spatial protection pattern. The Markov-CA model realized the simulation of spatial-temporal changes in the dominant ESFs with a high precision Kappa coefficient of above 0.95, which illustrated the feasibility of using this model to simulate the future dominant ESF spatial pattern. The simulation results showed that the dominant ESFs in Qionglai will still undergo mutual conversions during 2019–2025 due to the effect of the their non-stationary nature. The ecological space will still maintain the three dominant ESFs of primary product production, climate regulation and hydrological regulation in 2025, but their areas will change to 32793 ha, 52490 ha and 13024 ha, respectively. This study can serve as a scientific reference for the delimitation of the ecological conservation redline, ecological function regionalization and the construction of an ecological spatial protection pattern.展开更多
文摘Space-time spreading (STS) and orthogonal transmit diversity (OTD) are towtransmit diversity schemes proposed by cdma2000 standard. In this paper, performance comparisonanalysis of the two transmits diversity schemes in multipath channel under multiuser situation arecarried out. Link level simulation in forward link cdma2000 is performed in IMT-2000 channel.Performance analysis and simulation results show that the performance improvement provided STS overOTD decreases as the increase of propagation path number and decrease of the user number.
基金Supported by the National Natural Science Foundation of China (No.60172029).
文摘A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performed jointly for the layers within the same group while the Decision Feedback Equalization (DFE) is performed for groups. Based on the assumption of QPSK modulation and the quasi-static flat fading channel, simulations are made to testify the performance of the proposed algorithm. The results show that the algorithm outperforms the original V-BLAST detection dramatically in Symbol Error Probability (SEP) per- formance. Specifically, Signal-to-Noise Ratio (SNR) improvement of 3.4dB is obtained for SEP of 10?2 (4×4 case), with a reasonable complexity maintained.
基金This work was supported in part by the National Basic Research Program of China(Grant No.2011CB302705)the National Natural Science Foundation of China(GrantNos.61003277,60903206)+1 种基金the State key DevelopmentProgram for Basic Research of China(No.2009CB3020402)the National Natural Science Foun-dation of Jiangsu Province(Grant No.BK2010102)
文摘In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achieve higher energy efficiency and lower delay of packet transmissions.We particularly address long sleeping intervals in low-duty-cycle networks by exploiting multi-path diversity.Specifically,we propose to employ an erasure-coding scheme to improve reliability.With respect to energy efficiency and delivery timeliness,we formulate the problem in optimal allocation of coded blocks over multiple paths,which is then proved to be NP-hard.We further propose a near-optimal algorithm to solve the allocation problem.Through extensive simulations,we evaluate the impact of network parameters and demonstrate the effectiveness of our proposal.
文摘The paper investigated the performance of a solar chimney, by measuring the chimney air temperature and velocity. A short solar chimney prototype was designed and constructed at Botswana Technology Center. A wind turbine was installed to rotate a small DC generator. Temperatures and velocities were measured at different times of the day with thermocouples and hotwire anemometer, respectively. Irradiance was measured with pyranometer. A Delta-T data logger was used to store data at intervals of 30 s. Various graphs depicting the influence of irradiance on temperature, velocity and power have been plotted. Irradiance was found to affect the chimney temperature and subsequently affects chimney air velocity and power produced. Ambient air (wind) velocity was found to have influence on the performance of the solar chimney by increasing chimney air velocity.
基金The Sichuan Science and Technology Program (2020YFS0335, 2021YFH0121)The National College Students’ Innovative Entrepreneurial Training Plan Program of Sichuan Agricultural University (202110626038)The Double Support Program Project of Discipline Construction of Sichuan Agricultural University of China (2018, 2019, 2020)。
文摘Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological protection pattern of territorial space, which has important theoretical significance and application value. At present, most research on the identification, functional partitioning and pattern reconstruction of ecological space refers to the current ESFs and their structural information, which ignores the spatial-temporal dynamic nature of the comprehensive and dominant ESFs, and does not seriously consider the change simulation in the dominant ESFs of the future ecological space. This affects the rationality of constructing an ecological space protection pattern to some extent. In this study, we propose an ecological space delimitation method based on the dynamic change characteristics of the ESFs, realize the identification of the ecological space range in Qionglai City and solve the problem of ignoring the spatial-temporal changes of ESFs in current research. On this basis, we also apply the Markov-CA model to integrate the spatial-temporal change characteristics of the dominant ESFs, successfully realize the simulation of the spatial-temporal changes in the dominant ESFs in Qionglai City’s ecological space in 2025, find a suitable method for simulating ecological spatial-temporal changes and also provide a basis for constructing a reasonable ecological space protection pattern. This study finds that the comprehensive quantity of ESF and its annual rate of change in Qionglai City show obvious dynamics, which confirms the necessity of considering the dynamic characteristics of ESFs when identifying ecological space. The areas of ecological space in Qionglai city represent 98307 ha by using the ecological space identification method proposed in this study, which is consistent with the ecological spatial distribution in the local ecological civilization construction plan. This confirms the reliability of the ecological space identification method based on the dynamic characteristics of the ESFs. The results also show that the dominant ESFs in Qionglai City represented strong non-stationary characteristics during 2003–2019,which showed that we should fully consider the influence of the dynamics in the dominant ESFs on the future ESF pattern during the process of constructing the ecological spatial protection pattern. The Markov-CA model realized the simulation of spatial-temporal changes in the dominant ESFs with a high precision Kappa coefficient of above 0.95, which illustrated the feasibility of using this model to simulate the future dominant ESF spatial pattern. The simulation results showed that the dominant ESFs in Qionglai will still undergo mutual conversions during 2019–2025 due to the effect of the their non-stationary nature. The ecological space will still maintain the three dominant ESFs of primary product production, climate regulation and hydrological regulation in 2025, but their areas will change to 32793 ha, 52490 ha and 13024 ha, respectively. This study can serve as a scientific reference for the delimitation of the ecological conservation redline, ecological function regionalization and the construction of an ecological spatial protection pattern.