The Weihe River Basin has a significant number of tributaries and a delicate ecological environment.Understanding the spatial and temporal evolution and determinants of landscape ecological risk in the Weihe River Bas...The Weihe River Basin has a significant number of tributaries and a delicate ecological environment.Understanding the spatial and temporal evolution and determinants of landscape ecological risk in the Weihe River Basin(WRB)can improve the scientific protection and development of its watershed ecosystems.This study is based on land use statistics from the WRB for a 30-year period represented by 1990,2000,2010,and 2020.An initial model for the assessment of landscaping ecological hazards was created using the software that was also used to generate the landscape ecological risk index,such as ArcGIS 10.4 and Fragstats 4.2-64.Next,the spatial and temporal evolution of landscape ecological risk in the vicinity of the study area was characterized by the trajectory of the center of gravity migration and the spatial autocorrelation of GeoDa.Finally,Geodetector was used to analyze ecological risk drivers in the landscapes.According to the findings,the high-risk and relatively high-risk regions are steadily expanding,while the low-risk and relatively low-risk areas dominate the ecological risk landscape in the WRB.Within the Weihe River Basin,Xianyang and Xi'an are the areas to which the high-risk centers of gravity are migrating.Positive spatial correlations were found between the landscape ecological hazards in the study area,most prominently in the form of high-high and low-low aggregations.The primary drivers are the interplay between the GDP component,temperature,and elevation as a single factor.展开更多
The exploration of ecological safety in tourism sites can provide a concrete path for sustainable tourism development in a region.Based on the“Driver-Pressure-State-Impact-Response”(DPSIR)model,we constructed an ind...The exploration of ecological safety in tourism sites can provide a concrete path for sustainable tourism development in a region.Based on the“Driver-Pressure-State-Impact-Response”(DPSIR)model,we constructed an index system for the evaluation of tourism ecological security(TES)in the Silk Road Economic Belt(SREB)from 2005 to 2020.This index system was used to explore the characteristics of spatial and temporal dynamic evolution with the help of entropy weight TOPSIS method,dynamic index of TES and Markov probability transfer matrix,and a standard deviational ellipse(SDE)model and GM(1,1)model were constructed for spatial pattern analysis and prediction.The results indicate four key aspects of this system.(1)In terms of spatiotemporal evolution,the tourism ecological safety index(TESI)of the SREB increased,the TES levels of the northwestern and southwestern provinces and cities differed significantly,and the quality conditions of TES in the southwestern provinces and cities were better than in the northwest.(2)In terms of dynamic evolutionary characteristics,the speed of change at each level of the SREB was slow,but the level of TES has improved.The TES level has not shifted by leaps and bounds,and the shifts in the level type show“path dependence”and“self-locking”effects.(3)In terms of spatial and temporal distribution patterns,the spatial pattern of TES in the SREB is a“northwest-southeast”movement trend,and the spatial distribution appeared as“aggregation”from 2005 to 2020.The prediction results show that the center of gravity of TES in the SREB will shift to the southeast from 2025 to 2035,and the spatial spillover effect will be reduced.(4)In terms of driving factors,the number of star-rated hotels,and the amounts of industrial wastewater emissions,tourism foreign exchange earnings,forest coverage,and other parameters are the key factors affecting TES,and the booming tourism industry requires the interconnection and interpenetration of various factors.The results of this study can provide a reference for tourism development and ecological environmental protection in the Silk Road Economic Belt.展开更多
The temporal-spatial pattern of linear cultural heritage in the context of the tourism industry is closely linked to heritage management.Using the 1800 km long Beijing-Hangzhou Grand Canal as an example,this study com...The temporal-spatial pattern of linear cultural heritage in the context of the tourism industry is closely linked to heritage management.Using the 1800 km long Beijing-Hangzhou Grand Canal as an example,this study compared the dynamic evolution of tourism businesses in Beijing,Liaocheng,and Yangzhou at three time points(2010,2015,and 2019)via nearest neighbor analysis,kernel density estimation,and the standard deviational ellipse.Next,a Geo-detector was used to examine the influencing factors.The results reveal significant growth regardless of the quantity or agglomeration degree from 2010 to 2019,and the direction of industrial expansion is consistent with the flow direction of the canal.Moreover,the explanatory powers of factors related to socioeconomic development and canal resources are obviously stronger than those of the natural environment.The findings of this study offer theoretical constructs and policy recommendations for the sustainable development of the Beijing-Hangzhou Grand Canal and other linear cultural heritage sites.展开更多
Surface albedo directly affects the radiation balance and surface heat budget,and is a crucial variable in local and global climate research.In this study,the spatial and temporal distribution of the surface albedo is...Surface albedo directly affects the radiation balance and surface heat budget,and is a crucial variable in local and global climate research.In this study,the spatial and temporal distribution of the surface albedo is analysed for Beijing in 2015,and the corresponding individual and interactive driving forces of different explanatory factors are quantitatively assessed based on geographical detectors.The results show that surface albedo is high in the southeast and low in the northwest of Beijing,with the greatest change occurring in winter and the smallest change occurring in spring.The minimum and maximum annual surface albedo values occurred in autumn and winter,respectively,and showed significant spatial and temporal heterogeneity.LULC,NDVI,elevation,slope,temperature,and precipitation each had a significant influence on the spatial pattern of albedo,yielding explanatory power values of 0.537,0.625,0.512,0.531,0.515 and 0.190,respectively.Some explanatory factors have significant differences in influencing the spatial distribution of albedo,and there is significant interaction between them which shows the bivariate enhancement result.Among them,the interaction between LULC and NDVI was the strongest,with a q-statistic of 0.710,while the interaction between temperature and precipitation was the weakest,with a q-statistic of 0.531.The results of this study provide a scientific basis for understanding the spatial and temporal distribution characteristics of surface albedo in Beijing and the physical processes of energy modules in regional climate and land surface models.展开更多
An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species.However,information from which to draw general conclusions regarding changes in fish assembla...An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species.However,information from which to draw general conclusions regarding changes in fish assemblages is insufficient because of the limitations of available approaches.We used a combination of acoustic surveys,gillnet sampling,and geostatistical simulations to document the spatiotemporal variations in the fish assemblages downstream of the Gezhouba Dam,before and after the third impoundment of Three Gorges Reservoir(TGR).To conduct a hydroacoustic identification of individual species,we matched the size distributions of the fishes captured by gillnet with those of the acoustic surveys.An optimum threshold of target strength of 50 dB re 1 m 2 was defined,and acoustic surveys were purposefully extended to the selected fish assemblages(i.e.,endemic Coreius species) that was acquired by the size and species selectivity of the gillnet sampling.The relative proportion of fish species in acoustic surveys was allocated based on the composition(%) of the harvest in the gillnet surveys.Geostatistical simulations were likewise used to generate spatial patterns of fish distribution,and to determine the absolute abundance of the selected fish assemblages.We observed both the species composition and the spatial distribution of the selected fish assemblages changed significantly after implementation of new flow regulation in the TGR,wherein an immediate sharp population decline in the Coreius occurred.Our results strongly suggested that the new flow regulation in the TGR impoundment adversely affected downstream fish species,particularly the endemic Coreius species.To determine the factors responsible for the decline,we associated the variation in the fish assemblage patterns with changes in the environment and determined that substrate erosion resulting from trapping practices in the TGR likely played a key role.展开更多
基金The Soft Science Research Project of Henan Provincial Science and Technology Department(212400410023)The General Project of Henan University Humanities and Social Science Research(2021-ZZJH-159).
文摘The Weihe River Basin has a significant number of tributaries and a delicate ecological environment.Understanding the spatial and temporal evolution and determinants of landscape ecological risk in the Weihe River Basin(WRB)can improve the scientific protection and development of its watershed ecosystems.This study is based on land use statistics from the WRB for a 30-year period represented by 1990,2000,2010,and 2020.An initial model for the assessment of landscaping ecological hazards was created using the software that was also used to generate the landscape ecological risk index,such as ArcGIS 10.4 and Fragstats 4.2-64.Next,the spatial and temporal evolution of landscape ecological risk in the vicinity of the study area was characterized by the trajectory of the center of gravity migration and the spatial autocorrelation of GeoDa.Finally,Geodetector was used to analyze ecological risk drivers in the landscapes.According to the findings,the high-risk and relatively high-risk regions are steadily expanding,while the low-risk and relatively low-risk areas dominate the ecological risk landscape in the WRB.Within the Weihe River Basin,Xianyang and Xi'an are the areas to which the high-risk centers of gravity are migrating.Positive spatial correlations were found between the landscape ecological hazards in the study area,most prominently in the form of high-high and low-low aggregations.The primary drivers are the interplay between the GDP component,temperature,and elevation as a single factor.
基金The Scientific Research Fund Project of Yunnan Education Department(2021J0592)The Yunnan University of Finance and EconomicsProgramme(2022D13)The Graduate Student Innovation Fund Project of Yunnan University of Finance and Economics(2022YUFEYC10).
文摘The exploration of ecological safety in tourism sites can provide a concrete path for sustainable tourism development in a region.Based on the“Driver-Pressure-State-Impact-Response”(DPSIR)model,we constructed an index system for the evaluation of tourism ecological security(TES)in the Silk Road Economic Belt(SREB)from 2005 to 2020.This index system was used to explore the characteristics of spatial and temporal dynamic evolution with the help of entropy weight TOPSIS method,dynamic index of TES and Markov probability transfer matrix,and a standard deviational ellipse(SDE)model and GM(1,1)model were constructed for spatial pattern analysis and prediction.The results indicate four key aspects of this system.(1)In terms of spatiotemporal evolution,the tourism ecological safety index(TESI)of the SREB increased,the TES levels of the northwestern and southwestern provinces and cities differed significantly,and the quality conditions of TES in the southwestern provinces and cities were better than in the northwest.(2)In terms of dynamic evolutionary characteristics,the speed of change at each level of the SREB was slow,but the level of TES has improved.The TES level has not shifted by leaps and bounds,and the shifts in the level type show“path dependence”and“self-locking”effects.(3)In terms of spatial and temporal distribution patterns,the spatial pattern of TES in the SREB is a“northwest-southeast”movement trend,and the spatial distribution appeared as“aggregation”from 2005 to 2020.The prediction results show that the center of gravity of TES in the SREB will shift to the southeast from 2025 to 2035,and the spatial spillover effect will be reduced.(4)In terms of driving factors,the number of star-rated hotels,and the amounts of industrial wastewater emissions,tourism foreign exchange earnings,forest coverage,and other parameters are the key factors affecting TES,and the booming tourism industry requires the interconnection and interpenetration of various factors.The results of this study can provide a reference for tourism development and ecological environmental protection in the Silk Road Economic Belt.
基金The National Natural Science Foundation of China(42301273)The R&D Program of Beijing Municipal Education Commission(SM202210015004)The Beijing Central Axis Protection Foundation(DYKT-2023-015).
文摘The temporal-spatial pattern of linear cultural heritage in the context of the tourism industry is closely linked to heritage management.Using the 1800 km long Beijing-Hangzhou Grand Canal as an example,this study compared the dynamic evolution of tourism businesses in Beijing,Liaocheng,and Yangzhou at three time points(2010,2015,and 2019)via nearest neighbor analysis,kernel density estimation,and the standard deviational ellipse.Next,a Geo-detector was used to examine the influencing factors.The results reveal significant growth regardless of the quantity or agglomeration degree from 2010 to 2019,and the direction of industrial expansion is consistent with the flow direction of the canal.Moreover,the explanatory powers of factors related to socioeconomic development and canal resources are obviously stronger than those of the natural environment.The findings of this study offer theoretical constructs and policy recommendations for the sustainable development of the Beijing-Hangzhou Grand Canal and other linear cultural heritage sites.
基金The Major Project of High Resolution Earth Observation System(06-Y30F04-9001-2022)The National Natural Science Foundation of China(41471423)。
文摘Surface albedo directly affects the radiation balance and surface heat budget,and is a crucial variable in local and global climate research.In this study,the spatial and temporal distribution of the surface albedo is analysed for Beijing in 2015,and the corresponding individual and interactive driving forces of different explanatory factors are quantitatively assessed based on geographical detectors.The results show that surface albedo is high in the southeast and low in the northwest of Beijing,with the greatest change occurring in winter and the smallest change occurring in spring.The minimum and maximum annual surface albedo values occurred in autumn and winter,respectively,and showed significant spatial and temporal heterogeneity.LULC,NDVI,elevation,slope,temperature,and precipitation each had a significant influence on the spatial pattern of albedo,yielding explanatory power values of 0.537,0.625,0.512,0.531,0.515 and 0.190,respectively.Some explanatory factors have significant differences in influencing the spatial distribution of albedo,and there is significant interaction between them which shows the bivariate enhancement result.Among them,the interaction between LULC and NDVI was the strongest,with a q-statistic of 0.710,while the interaction between temperature and precipitation was the weakest,with a q-statistic of 0.531.The results of this study provide a scientific basis for understanding the spatial and temporal distribution characteristics of surface albedo in Beijing and the physical processes of energy modules in regional climate and land surface models.
基金supported by the National Natural Science Foundation of China (Grant No. 51079089)Key Project of the National Twelfth-Five Year Research Program of China (Grant No.2012BAC06B04)the Ecological and Environmental Monitoring Programs of China Three Gorges Project Corporation (Grant Nos. 241202004and SXSN/2726)
文摘An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species.However,information from which to draw general conclusions regarding changes in fish assemblages is insufficient because of the limitations of available approaches.We used a combination of acoustic surveys,gillnet sampling,and geostatistical simulations to document the spatiotemporal variations in the fish assemblages downstream of the Gezhouba Dam,before and after the third impoundment of Three Gorges Reservoir(TGR).To conduct a hydroacoustic identification of individual species,we matched the size distributions of the fishes captured by gillnet with those of the acoustic surveys.An optimum threshold of target strength of 50 dB re 1 m 2 was defined,and acoustic surveys were purposefully extended to the selected fish assemblages(i.e.,endemic Coreius species) that was acquired by the size and species selectivity of the gillnet sampling.The relative proportion of fish species in acoustic surveys was allocated based on the composition(%) of the harvest in the gillnet surveys.Geostatistical simulations were likewise used to generate spatial patterns of fish distribution,and to determine the absolute abundance of the selected fish assemblages.We observed both the species composition and the spatial distribution of the selected fish assemblages changed significantly after implementation of new flow regulation in the TGR,wherein an immediate sharp population decline in the Coreius occurred.Our results strongly suggested that the new flow regulation in the TGR impoundment adversely affected downstream fish species,particularly the endemic Coreius species.To determine the factors responsible for the decline,we associated the variation in the fish assemblage patterns with changes in the environment and determined that substrate erosion resulting from trapping practices in the TGR likely played a key role.