期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种融合时空相关性特征的高效供水管网漏损识别方法
1
作者 胡克勇 孟欣 孙中卫 《水电能源科学》 2024年第11期137-139,54,共4页
供水行业的数字化转型,极大推动了数据驱动高效漏损识别方法研究,其已成为供水管网漏损控制领域研究热点。为此,提出一种融合时空相关性特征的高效供水管网漏损识别方法。该方法首先将供水管网压力时序数据与管网拓扑结构相结合来构建... 供水行业的数字化转型,极大推动了数据驱动高效漏损识别方法研究,其已成为供水管网漏损控制领域研究热点。为此,提出一种融合时空相关性特征的高效供水管网漏损识别方法。该方法首先将供水管网压力时序数据与管网拓扑结构相结合来构建供水管网数据图,其蕴含数据的时空相关性特征;其次,通过改进图卷积神经网络和门控循环单元来同时提取数据图的时空相关性特征,进而构建高效供水管网漏损识别方法,实现供水管网漏损的高效识别。试验结果表明,该方法在两个供水管网上的四个评价指标结果均优于基准方法,且其具有94%以上的准确度。这将为供水管网的可持续漏损控制提供有效工具。 展开更多
关键词 漏损识别 时空相关性特征 图卷积神经网络 门控循环单元
下载PDF
Selective transmission and channel estimation in massive MIMO systems 被引量:5
2
作者 杨睿哲 Zong Liang +2 位作者 Si Pengbo Ma Dawei Zhang Yanhua 《High Technology Letters》 EI CAS 2016年第1期99-106,共8页
Massive MIMO systems have got extraordinary spectral efficiency using a large number of base station antennas,but it is in the challenge of pilot contamination using the aligned pilots.To address this issue,a selectiv... Massive MIMO systems have got extraordinary spectral efficiency using a large number of base station antennas,but it is in the challenge of pilot contamination using the aligned pilots.To address this issue,a selective transmission is proposed using time-shifted pilots with cell grouping,where the strong interfering users in downlink transmission cells are temporally stopped during the pilots transmission in uplink cells.Based on the spatial characteristics of physical channel models,the strong interfering users are selected to minimize the inter-cell interference and the cell grouping is designed to have less temporally stopped users within a smaller area.Furthermore,a Kalman estimator is proposed to reduce the unexpected effect of residual interferences in channel estimation,which exploits both the spatial-time correlation of channels and the share of the interference information.The numerical results show that our scheme significantly improves the channel estimation accuracy and the data rates. 展开更多
关键词 multiple-input multiple-output (MIMO) selective transmission time-shifted pilots KALMAN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部