Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of meth...Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of methods,but most of these methods only use the time domain information of traffic flow data to predict the traffic flow,ignoring the impact of spatial correlation on the prediction of target road segment flow,which leads to poor prediction accuracy.In this paper,a traffic flow prediction model called as long short time memory and random forest(LSTM-RF)was proposed based on the combination model.In the process of traffic flow prediction,the long short time memory(LSTM)model was used to extract the time sequence features of the predicted target road segment.Then,the predicted value of LSTM and the collected information of adjacent upstream and downstream sections were simultaneously used as the input features of the random forest model to analyze the spatial-temporal correlation of traffic flow,so as to obtain the final prediction results.The traffic flow data of 132 urban road sections collected by the license plate recognition system in Guiyang City were tested and verified.The results show that the method is better than the single model in prediction accuracy,and the prediction error is obviously reduced compared with the single model.展开更多
In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behavi...A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.展开更多
文摘Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of methods,but most of these methods only use the time domain information of traffic flow data to predict the traffic flow,ignoring the impact of spatial correlation on the prediction of target road segment flow,which leads to poor prediction accuracy.In this paper,a traffic flow prediction model called as long short time memory and random forest(LSTM-RF)was proposed based on the combination model.In the process of traffic flow prediction,the long short time memory(LSTM)model was used to extract the time sequence features of the predicted target road segment.Then,the predicted value of LSTM and the collected information of adjacent upstream and downstream sections were simultaneously used as the input features of the random forest model to analyze the spatial-temporal correlation of traffic flow,so as to obtain the final prediction results.The traffic flow data of 132 urban road sections collected by the license plate recognition system in Guiyang City were tested and verified.The results show that the method is better than the single model in prediction accuracy,and the prediction error is obviously reduced compared with the single model.
文摘In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of Ministry of Education of China
文摘A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.