In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
We obtain a new relation between Green's functions of the time-dependent Schrōdinger equation forstationary potentials and Green's functions of the same equation for certain time-dependent potentials. The rel...We obtain a new relation between Green's functions of the time-dependent Schrōdinger equation forstationary potentials and Green's functions of the same equation for certain time-dependent potentials. The relationobtained here emerges very easily from a transformation introduced by Ray [J.R. Ray, Phys. Rev. A26 (1982) 729] andgeneralizes former work of Dodonov et al. [V.V. Dodonov, V.I. Man'ko, and D.E. Nikonov, Phys. Lett. A162 (1992)359.]展开更多
The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as ...The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as its variation reflects the temporal evolution of the dynamic process of solar magnetic activities from the initial phase to the peak phase of the cycle. The correlation coefficient between the solar maximum (Rmax) and the rising rate (βa) at Am months after the solar minimum (Rmin) is studied and shown to increase as the cycle progresses with an inflection point (r = 0.83) at about Am = 20 months. The prediction error of Rmax based on βa is found within estimation at the 90% level of confidence and the relative prediction error will be less than 20% when Am ≥ 20. From the above relationship, the current cycle (24) is preliminarily predicted to peak around October, 2013 with a size of Rmax = 84 + 33 at the 90% level of confidence.展开更多
With the help of the similarity transformation connected the variable-eoeicient (3+1)-dimensionai nonlin- ear Sehroedinger equation with the standard nonlinear Schr6dinger equation, we firstly obtain first-order an...With the help of the similarity transformation connected the variable-eoeicient (3+1)-dimensionai nonlin- ear Sehroedinger equation with the standard nonlinear Schr6dinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the reai time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value To to achieve the sustained and restrained spatiotemporai rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporai rogue waves can aiso be realized by setting different values of Xo.展开更多
文摘In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
文摘We obtain a new relation between Green's functions of the time-dependent Schrōdinger equation forstationary potentials and Green's functions of the same equation for certain time-dependent potentials. The relationobtained here emerges very easily from a transformation introduced by Ray [J.R. Ray, Phys. Rev. A26 (1982) 729] andgeneralizes former work of Dodonov et al. [V.V. Dodonov, V.I. Man'ko, and D.E. Nikonov, Phys. Lett. A162 (1992)359.]
基金supported by the National Natural Science Foundation of China (Grant Nos.10973020,40890161 and 10921303)the National Basic Research Program of China (Grant No.2011CB811406)the China Meteorological Administration (Grant No.GYHY201106011)
文摘The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as its variation reflects the temporal evolution of the dynamic process of solar magnetic activities from the initial phase to the peak phase of the cycle. The correlation coefficient between the solar maximum (Rmax) and the rising rate (βa) at Am months after the solar minimum (Rmin) is studied and shown to increase as the cycle progresses with an inflection point (r = 0.83) at about Am = 20 months. The prediction error of Rmax based on βa is found within estimation at the 90% level of confidence and the relative prediction error will be less than 20% when Am ≥ 20. From the above relationship, the current cycle (24) is preliminarily predicted to peak around October, 2013 with a size of Rmax = 84 + 33 at the 90% level of confidence.
基金Supported by the National Natural Science Foundation of China under Grant No.11005092the Program for Innovative Research Team of Young Teachers under Grant No.2009RC01the Scientific Research and Developed Fund under Grant No.2009FK42 of Zhejiang A&F University
文摘With the help of the similarity transformation connected the variable-eoeicient (3+1)-dimensionai nonlin- ear Sehroedinger equation with the standard nonlinear Schr6dinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the reai time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value To to achieve the sustained and restrained spatiotemporai rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporai rogue waves can aiso be realized by setting different values of Xo.