In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achi...In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achieve higher energy efficiency and lower delay of packet transmissions.We particularly address long sleeping intervals in low-duty-cycle networks by exploiting multi-path diversity.Specifically,we propose to employ an erasure-coding scheme to improve reliability.With respect to energy efficiency and delivery timeliness,we formulate the problem in optimal allocation of coded blocks over multiple paths,which is then proved to be NP-hard.We further propose a near-optimal algorithm to solve the allocation problem.Through extensive simulations,we evaluate the impact of network parameters and demonstrate the effectiveness of our proposal.展开更多
Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO...Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO) communica- tion systems, this paper establishes a channel model for the mobile platform. Based on the combination of Alamouti space-time code and time hopping ultra-wide band (TH-UWB) communications, a novel repetition space-time coding (RSTC) method for mobile 2x2 free-space optical communications with pulse position modulation (PPM) is devel- oped. In particular, two decoding methods of equal gain combining (EGC) maximum likelihood detection (MLD) and correlation matrix detection (CMD) are derived. When a quasi-static fading and weak turbulence channel model are considered, simulation results show that whether the channel state information (CSI) is known or not, the coding sys- tem demonstrates more significant performance of the symbol error rate (SER) than the uncoding. In other words, transmitting diversity can be achieved while conveying the information only through the time delays of the modulated signals transmitted from different antennas. CMD has almost the same effect of signal combining with maximal ratio combining (MRC). However, when the channel correlation increases, SER performance of the coding 2×2 system de- grades significantly.展开更多
基金This work was supported in part by the National Basic Research Program of China(Grant No.2011CB302705)the National Natural Science Foundation of China(GrantNos.61003277,60903206)+1 种基金the State key DevelopmentProgram for Basic Research of China(No.2009CB3020402)the National Natural Science Foun-dation of Jiangsu Province(Grant No.BK2010102)
文摘In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achieve higher energy efficiency and lower delay of packet transmissions.We particularly address long sleeping intervals in low-duty-cycle networks by exploiting multi-path diversity.Specifically,we propose to employ an erasure-coding scheme to improve reliability.With respect to energy efficiency and delivery timeliness,we formulate the problem in optimal allocation of coded blocks over multiple paths,which is then proved to be NP-hard.We further propose a near-optimal algorithm to solve the allocation problem.Through extensive simulations,we evaluate the impact of network parameters and demonstrate the effectiveness of our proposal.
基金supported by the National Natural Science Foundation of China(No.61205106)
文摘Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO) communica- tion systems, this paper establishes a channel model for the mobile platform. Based on the combination of Alamouti space-time code and time hopping ultra-wide band (TH-UWB) communications, a novel repetition space-time coding (RSTC) method for mobile 2x2 free-space optical communications with pulse position modulation (PPM) is devel- oped. In particular, two decoding methods of equal gain combining (EGC) maximum likelihood detection (MLD) and correlation matrix detection (CMD) are derived. When a quasi-static fading and weak turbulence channel model are considered, simulation results show that whether the channel state information (CSI) is known or not, the coding sys- tem demonstrates more significant performance of the symbol error rate (SER) than the uncoding. In other words, transmitting diversity can be achieved while conveying the information only through the time delays of the modulated signals transmitted from different antennas. CMD has almost the same effect of signal combining with maximal ratio combining (MRC). However, when the channel correlation increases, SER performance of the coding 2×2 system de- grades significantly.