The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
We study the mass neutrino interference phase in Schwarzschild-de Sitter space time along the null trajectory and the geodesic line and obtain the effects of cosmological constant A on the neutrino oscillation. Firstl...We study the mass neutrino interference phase in Schwarzschild-de Sitter space time along the null trajectory and the geodesic line and obtain the effects of cosmological constant A on the neutrino oscillation. Firstly, in the high energy limit, we find that the phase along the geodesic keeps the double of that along the null. Secondly, we calculate the phase on the condition that the cosmological constant, A, is a small quantity. The correction of the phase due to A is given. Finally, we calculate the proper oscillation length in Schwarzschild-de Sitter space-time, which increases because of the existence of A, compared with the result in Schwarzschild space-time. All of our results can be reduced to those in Schwarzschild space-time as A approaches to zero.展开更多
The Casimir energy of massive scalar field with hybrid (Diriehlet-Neumann) boundary condition is calculated. In order to regularize the model, the typical methods named as mode summation method and Green's function...The Casimir energy of massive scalar field with hybrid (Diriehlet-Neumann) boundary condition is calculated. In order to regularize the model, the typical methods named as mode summation method and Green's function method are used respectively. It is found that the regularized zero-point energy density depends on the scalar field's mass. When the field is massless, the result is consistent with previous literatures.展开更多
The characteristics of internal tides in the upper layer of the Luzon Strait are investigated on the basis of direct-observation current data recorded on April 25 and September 26, 2008 by an acoustic Doppler current ...The characteristics of internal tides in the upper layer of the Luzon Strait are investigated on the basis of direct-observation current data recorded on April 25 and September 26, 2008 by an acoustic Doppler current profiler. Spectral analysis and energy estimation show that the diurnals and semidiurnals carry most of the energy of internal tides. Values of the depth-integrated total energy E for the three frequency bands of diurnal, semidiurnal, and high frequencies are 31, 6.9, and 3.4 kJ. m, respectively. Near-inertial peaks are only present in the baroclinic component. The behavior of typical tidal frequencies (i.e., O1, K1, M2, MK3, and M4) and the near-inertial frequency is basically consistent with linear internal wave theory, which predicts E+(ω)/E_(ω)=(ω-f)2/(ω+f)2 at depths above 66 m, while not all prominent tidal components coincide well with the relation of the linear internal wave field at other depths. Examinations of depth structures of the baroclinic tides and temporal variations show that the surface tides and internal tides are both of mixed type, having diurnal inequality and spring-neap fortnight periods. The K1 and O1 tides have comparable cross- and along-shelf components, while the M2 and S2 tides propagate toward the shelf in the northern South China Sea as wave beams. The amplitude and phase of internal tides vary with time, but M2 and S2 tides appear to have structures dominated by the first mode, while the K1 and O1 tides resemble second-mode structures. The minor to major axis ratios are close to expected values of flω in the thermocline.展开更多
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
文摘We study the mass neutrino interference phase in Schwarzschild-de Sitter space time along the null trajectory and the geodesic line and obtain the effects of cosmological constant A on the neutrino oscillation. Firstly, in the high energy limit, we find that the phase along the geodesic keeps the double of that along the null. Secondly, we calculate the phase on the condition that the cosmological constant, A, is a small quantity. The correction of the phase due to A is given. Finally, we calculate the proper oscillation length in Schwarzschild-de Sitter space-time, which increases because of the existence of A, compared with the result in Schwarzschild space-time. All of our results can be reduced to those in Schwarzschild space-time as A approaches to zero.
基金supported by National Natural Science Foundation of China under Grant Nos.10773002 and 10875012the National Fundamental Research Program of China under Grant No.2003CB716302
文摘The Casimir energy of massive scalar field with hybrid (Diriehlet-Neumann) boundary condition is calculated. In order to regularize the model, the typical methods named as mode summation method and Green's function method are used respectively. It is found that the regularized zero-point energy density depends on the scalar field's mass. When the field is massless, the result is consistent with previous literatures.
基金supported by National Basic Research Program of China (Grant Nos. 2007CB816003, 2011CB403503)International Cooperative Project of the Ministry of Science and Technology of China (Grant No. 2006DFB21630)+1 种基金Key Project of the National Natural Science Foundation of China (Grant No. 40520140073)the Scientific Research Fund of the Second Institute of Oceanography, SOA (Grant Nos. JG1009, JG0711 and JT0702)
文摘The characteristics of internal tides in the upper layer of the Luzon Strait are investigated on the basis of direct-observation current data recorded on April 25 and September 26, 2008 by an acoustic Doppler current profiler. Spectral analysis and energy estimation show that the diurnals and semidiurnals carry most of the energy of internal tides. Values of the depth-integrated total energy E for the three frequency bands of diurnal, semidiurnal, and high frequencies are 31, 6.9, and 3.4 kJ. m, respectively. Near-inertial peaks are only present in the baroclinic component. The behavior of typical tidal frequencies (i.e., O1, K1, M2, MK3, and M4) and the near-inertial frequency is basically consistent with linear internal wave theory, which predicts E+(ω)/E_(ω)=(ω-f)2/(ω+f)2 at depths above 66 m, while not all prominent tidal components coincide well with the relation of the linear internal wave field at other depths. Examinations of depth structures of the baroclinic tides and temporal variations show that the surface tides and internal tides are both of mixed type, having diurnal inequality and spring-neap fortnight periods. The K1 and O1 tides have comparable cross- and along-shelf components, while the M2 and S2 tides propagate toward the shelf in the northern South China Sea as wave beams. The amplitude and phase of internal tides vary with time, but M2 and S2 tides appear to have structures dominated by the first mode, while the K1 and O1 tides resemble second-mode structures. The minor to major axis ratios are close to expected values of flω in the thermocline.