提早预知植物生长发育是智能育种过程的重要组成部分,针对植物表型难以精准预测和模拟的问题,利用植物生长发育的空间和时间依赖性,提出了一种基于时空长短时记忆网络(Spatiotemporal long short-term memory,STLSTM)的植物生长发育预...提早预知植物生长发育是智能育种过程的重要组成部分,针对植物表型难以精准预测和模拟的问题,利用植物生长发育的空间和时间依赖性,提出了一种基于时空长短时记忆网络(Spatiotemporal long short-term memory,STLSTM)的植物生长发育预测模型,实现植物生长发育的预测。首先,通过微调Mask RCNN模型实现识别、提取植物掩模,预处理具有时空相关性的植物生长发育图像序列,构建植物生长发育预测数据集。然后,基于STLSTM建立植物生长发育预测模型,利用历史生长发育图像序列,融合时空深度特征,预测植物未来的生长发育图像序列。研究结果表明,所提出模型预测的图像序列与生长发育实际图像序列具有较高的一致性和相似性,首个预测时间节点的结构相似度为0.8741,均方误差为17.10,峰值信噪比为30.83,测试集的冠层叶面积、冠幅和叶片数预测R^(2)分别为0.9619、0.9087和0.9158。该研究实现了基于植物生长发育图像序列的生长发育预测,有效减少了田间反复试验的时间、土地和人力成本,为提高智能育种效率提供了参考。展开更多
有效波高(significant wave height,SWH)是海洋的重要参数之一,对其的精确预测对渔业发展、海上交通和海洋生态系统具有重要意义。为了提高有效波高的预测精度,本文提出了一种基于卷积神经网络-时空长短时记忆神经网络-卷积神经网络(con...有效波高(significant wave height,SWH)是海洋的重要参数之一,对其的精确预测对渔业发展、海上交通和海洋生态系统具有重要意义。为了提高有效波高的预测精度,本文提出了一种基于卷积神经网络-时空长短时记忆神经网络-卷积神经网络(convolutional neural network-spatiotemporal long short-term memory-convolutional neural network,CNN-STLSTM-CNN)的有效波高预测模型。该模型由编码器(Encoder)、解释器(Translator)和解码器(Decoder)构成。Encoder通过卷积神经网络提取SWH数据的空间特征,Translator通过时空长短时记忆神经网络(spatiotemporallongshort-term memory,STLSTM)提取SWH数据的空间特征在时间上的变化特性,Decoder通过卷积神经网络的转置卷积模块重建预测结果。对东海和南海海域的二维有效波高数据进行建模,实验结果表明CNNSTLSTM-CNN模型的均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)、均方根误差均值(mean of root mean squared error,M_RMSE)和平均绝对误差均值(mean of mean absolute error,M_MAE)等指标值均低于已有的方法,验证了CNN-STLSTM-CNN模型的有效性。展开更多
This paper considers the local linear estimation of a multivariate regression function and its derivatives for a stationary long memory(long range dependent) nonparametric spatio-temporal regression model.Under some m...This paper considers the local linear estimation of a multivariate regression function and its derivatives for a stationary long memory(long range dependent) nonparametric spatio-temporal regression model.Under some mild regularity assumptions, the pointwise strong convergence, the uniform weak consistency with convergence rates and the joint asymptotic distribution of the estimators are established. A simulation study is carried out to illustrate the performance of the proposed estimators.展开更多
文摘提早预知植物生长发育是智能育种过程的重要组成部分,针对植物表型难以精准预测和模拟的问题,利用植物生长发育的空间和时间依赖性,提出了一种基于时空长短时记忆网络(Spatiotemporal long short-term memory,STLSTM)的植物生长发育预测模型,实现植物生长发育的预测。首先,通过微调Mask RCNN模型实现识别、提取植物掩模,预处理具有时空相关性的植物生长发育图像序列,构建植物生长发育预测数据集。然后,基于STLSTM建立植物生长发育预测模型,利用历史生长发育图像序列,融合时空深度特征,预测植物未来的生长发育图像序列。研究结果表明,所提出模型预测的图像序列与生长发育实际图像序列具有较高的一致性和相似性,首个预测时间节点的结构相似度为0.8741,均方误差为17.10,峰值信噪比为30.83,测试集的冠层叶面积、冠幅和叶片数预测R^(2)分别为0.9619、0.9087和0.9158。该研究实现了基于植物生长发育图像序列的生长发育预测,有效减少了田间反复试验的时间、土地和人力成本,为提高智能育种效率提供了参考。
文摘有效波高(significant wave height,SWH)是海洋的重要参数之一,对其的精确预测对渔业发展、海上交通和海洋生态系统具有重要意义。为了提高有效波高的预测精度,本文提出了一种基于卷积神经网络-时空长短时记忆神经网络-卷积神经网络(convolutional neural network-spatiotemporal long short-term memory-convolutional neural network,CNN-STLSTM-CNN)的有效波高预测模型。该模型由编码器(Encoder)、解释器(Translator)和解码器(Decoder)构成。Encoder通过卷积神经网络提取SWH数据的空间特征,Translator通过时空长短时记忆神经网络(spatiotemporallongshort-term memory,STLSTM)提取SWH数据的空间特征在时间上的变化特性,Decoder通过卷积神经网络的转置卷积模块重建预测结果。对东海和南海海域的二维有效波高数据进行建模,实验结果表明CNNSTLSTM-CNN模型的均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)、均方根误差均值(mean of root mean squared error,M_RMSE)和平均绝对误差均值(mean of mean absolute error,M_MAE)等指标值均低于已有的方法,验证了CNN-STLSTM-CNN模型的有效性。
基金supported by National Natural Science Foundation of China(Grant No.11171147)Qing Lan Project,Jiangsu Province,and the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708044)
文摘This paper considers the local linear estimation of a multivariate regression function and its derivatives for a stationary long memory(long range dependent) nonparametric spatio-temporal regression model.Under some mild regularity assumptions, the pointwise strong convergence, the uniform weak consistency with convergence rates and the joint asymptotic distribution of the estimators are established. A simulation study is carried out to illustrate the performance of the proposed estimators.