Massive MIMO systems have got extraordinary spectral efficiency using a large number of base station antennas,but it is in the challenge of pilot contamination using the aligned pilots.To address this issue,a selectiv...Massive MIMO systems have got extraordinary spectral efficiency using a large number of base station antennas,but it is in the challenge of pilot contamination using the aligned pilots.To address this issue,a selective transmission is proposed using time-shifted pilots with cell grouping,where the strong interfering users in downlink transmission cells are temporally stopped during the pilots transmission in uplink cells.Based on the spatial characteristics of physical channel models,the strong interfering users are selected to minimize the inter-cell interference and the cell grouping is designed to have less temporally stopped users within a smaller area.Furthermore,a Kalman estimator is proposed to reduce the unexpected effect of residual interferences in channel estimation,which exploits both the spatial-time correlation of channels and the share of the interference information.The numerical results show that our scheme significantly improves the channel estimation accuracy and the data rates.展开更多
Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differenti...Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.展开更多
基金Supported by the Program for Excellent Talents in Beijing(No.2014000020124G040)National Natural Science Foundation of China(No.61372089,61571021)National Natural Science Foundation of Beijing(No.4132007,4132015,4132019)
文摘Massive MIMO systems have got extraordinary spectral efficiency using a large number of base station antennas,but it is in the challenge of pilot contamination using the aligned pilots.To address this issue,a selective transmission is proposed using time-shifted pilots with cell grouping,where the strong interfering users in downlink transmission cells are temporally stopped during the pilots transmission in uplink cells.Based on the spatial characteristics of physical channel models,the strong interfering users are selected to minimize the inter-cell interference and the cell grouping is designed to have less temporally stopped users within a smaller area.Furthermore,a Kalman estimator is proposed to reduce the unexpected effect of residual interferences in channel estimation,which exploits both the spatial-time correlation of channels and the share of the interference information.The numerical results show that our scheme significantly improves the channel estimation accuracy and the data rates.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA123310) and the National Natural Science Foundation of China (No. 60272079)
文摘Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.