期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度嵌套注意力下的SlowFast信息融合动作识别网络
1
作者
张起尧
桑海峰
《电子测量与仪器学报》
CSCD
北大核心
2024年第3期159-166,共8页
视频动作识别在视频监控、自动驾驶等多个领域都有着广泛的应用。SlowFast网络是视频动作识别领域经常使用的网络。目前SlowFast相关网络中使用注意力进行相关信息增强,注意力机制与网络的结合方式是将注意力机制嵌套到网络的各个卷积...
视频动作识别在视频监控、自动驾驶等多个领域都有着广泛的应用。SlowFast网络是视频动作识别领域经常使用的网络。目前SlowFast相关网络中使用注意力进行相关信息增强,注意力机制与网络的结合方式是将注意力机制嵌套到网络的各个卷积块之间,如果将注意力机制深层嵌套到卷积块的具体卷积层中,SlowFast网络的信息提取能力将更进一步。首先提出了一种深度嵌套注意力机制,该深度嵌套机制内部包含一种可以提取时空与通道信息的注意力SCTM,使SlowFast网络的3种信息提取能力得到了进一步加强。此外,目前多流网络融合的信息并没有充分的交互与处理。提出了一种基于交叉注意力与ConvLSTM的多流时空信息融合网络,使多流网络中每个流的信息充分交互。改进后的SlowFast网络在UCF101数据集上的Top-1准确率已达到98.5%,在HMDB51数据集中的准确率达到了80.1%。均优于目前已有的模型,比原始SlowFast网络提高了2.64%,且鉴于上述数据,深度嵌套注意力的SlowFast时空信息融合网络在信息提取与融合方面具有优越性能。
展开更多
关键词
视频动作识别
SlowFast
注意力
深层嵌套
信息融合网络
时空通道注意力
下载PDF
职称材料
题名
深度嵌套注意力下的SlowFast信息融合动作识别网络
1
作者
张起尧
桑海峰
机构
沈阳工业大学信息科学与工程学院
出处
《电子测量与仪器学报》
CSCD
北大核心
2024年第3期159-166,共8页
基金
国家自然科学基金(62173078)
辽宁省自然科学基金(2022-MS-268)项目资助。
文摘
视频动作识别在视频监控、自动驾驶等多个领域都有着广泛的应用。SlowFast网络是视频动作识别领域经常使用的网络。目前SlowFast相关网络中使用注意力进行相关信息增强,注意力机制与网络的结合方式是将注意力机制嵌套到网络的各个卷积块之间,如果将注意力机制深层嵌套到卷积块的具体卷积层中,SlowFast网络的信息提取能力将更进一步。首先提出了一种深度嵌套注意力机制,该深度嵌套机制内部包含一种可以提取时空与通道信息的注意力SCTM,使SlowFast网络的3种信息提取能力得到了进一步加强。此外,目前多流网络融合的信息并没有充分的交互与处理。提出了一种基于交叉注意力与ConvLSTM的多流时空信息融合网络,使多流网络中每个流的信息充分交互。改进后的SlowFast网络在UCF101数据集上的Top-1准确率已达到98.5%,在HMDB51数据集中的准确率达到了80.1%。均优于目前已有的模型,比原始SlowFast网络提高了2.64%,且鉴于上述数据,深度嵌套注意力的SlowFast时空信息融合网络在信息提取与融合方面具有优越性能。
关键词
视频动作识别
SlowFast
注意力
深层嵌套
信息融合网络
时空通道注意力
Keywords
video action recognition
SlowFast
deep nesting of attention
information fusion network
spatial channel temporal attention
分类号
TP391 [自动化与计算机技术—计算机应用技术]
TN98 [电子电信—信息与通信工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
深度嵌套注意力下的SlowFast信息融合动作识别网络
张起尧
桑海峰
《电子测量与仪器学报》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部