分布式光伏发电系统一般不配备多种类的传感器和监测设备,反映设备运行状态且可用于异常检测的数据有限。提出了基于STL-Bayesian时空模型的光伏异常状态检测方法,利用气象在时空上的传递性,挖掘光伏发电出力的关联性进而完成异常检测...分布式光伏发电系统一般不配备多种类的传感器和监测设备,反映设备运行状态且可用于异常检测的数据有限。提出了基于STL-Bayesian时空模型的光伏异常状态检测方法,利用气象在时空上的传递性,挖掘光伏发电出力的关联性进而完成异常检测。首先,用季节性分解(seasonal and trend decomposition using loess,STL)将光伏发电有功功率时序数据分解为3个分量;然后,研究不同长度数据输入对分解结果的影响和区域内分量的时空分布特性;接着,通过构建贝叶斯模型分别对趋势分量和剩余分量做短期和超短期空间插值,得到区域内光伏出力;最后,计算真实值与回归值的推土机距离(earth move's distance,EMD)用于检测异常状态。算例分析表明,所提模型在分布式光伏场景检测可逆异常和不可逆异常状态均有较高准确率。展开更多
时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶...时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶段方法,一阶段方法实现的是特征层面而非像素层面的帧插值,其在推理速度和计算复杂度上都明显更胜一筹。一些现有的一阶段STVSR方法采用基于像素幻觉的特征插值,这幻化了像素,因此很难应对帧间快速运动物体的预测。为此,提出一种基于光流法的金字塔编码器-解码器网络来进行时间特征插值,实现快速的双向光流估计和更真实自然的纹理合成,在使得网络结构更高效的同时弥补了大运动对光流估计带来的不稳定性。另外,空间模块采用基于滑动窗口的局部传播和基于循环网络的双向传播来强化帧对齐,整个网络称为时间特征细化网络(temporal feature refinement netowrk,TFRnet)。为了进一步挖掘TFRnet的潜力,将空间超分辨率先于时间超分辨率(space-first),在几种广泛使用的数据基准和评估指标上的实验证明了所提出方法TFRnet-sf的出色性能,在总体峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)提升的同时,插入中间帧的PSNR和SSIM也得到提升,在一定程度上缓和了插入的中间帧与原有帧之间PSNR和SSIM差距过大的问题。展开更多
文摘分布式光伏发电系统一般不配备多种类的传感器和监测设备,反映设备运行状态且可用于异常检测的数据有限。提出了基于STL-Bayesian时空模型的光伏异常状态检测方法,利用气象在时空上的传递性,挖掘光伏发电出力的关联性进而完成异常检测。首先,用季节性分解(seasonal and trend decomposition using loess,STL)将光伏发电有功功率时序数据分解为3个分量;然后,研究不同长度数据输入对分解结果的影响和区域内分量的时空分布特性;接着,通过构建贝叶斯模型分别对趋势分量和剩余分量做短期和超短期空间插值,得到区域内光伏出力;最后,计算真实值与回归值的推土机距离(earth move's distance,EMD)用于检测异常状态。算例分析表明,所提模型在分布式光伏场景检测可逆异常和不可逆异常状态均有较高准确率。
文摘时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶段方法,一阶段方法实现的是特征层面而非像素层面的帧插值,其在推理速度和计算复杂度上都明显更胜一筹。一些现有的一阶段STVSR方法采用基于像素幻觉的特征插值,这幻化了像素,因此很难应对帧间快速运动物体的预测。为此,提出一种基于光流法的金字塔编码器-解码器网络来进行时间特征插值,实现快速的双向光流估计和更真实自然的纹理合成,在使得网络结构更高效的同时弥补了大运动对光流估计带来的不稳定性。另外,空间模块采用基于滑动窗口的局部传播和基于循环网络的双向传播来强化帧对齐,整个网络称为时间特征细化网络(temporal feature refinement netowrk,TFRnet)。为了进一步挖掘TFRnet的潜力,将空间超分辨率先于时间超分辨率(space-first),在几种广泛使用的数据基准和评估指标上的实验证明了所提出方法TFRnet-sf的出色性能,在总体峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)提升的同时,插入中间帧的PSNR和SSIM也得到提升,在一定程度上缓和了插入的中间帧与原有帧之间PSNR和SSIM差距过大的问题。