The synchronization and asynchronization of two coupled excitable systems are investigated. The two systems with different initial configurations, which are separately a single spiral wave (or a travel wave) and the r...The synchronization and asynchronization of two coupled excitable systems are investigated. The two systems with different initial configurations, which are separately a single spiral wave (or a travel wave) and the rest state, can be developed to the synchronizing state with the same spiral wave (or travel wave) in each system, when the coupling is very strong. Decreasing the coupling intensity, two rest states or two different configurations appear in the two systems. The qualitative analysis and interpretation are given.展开更多
A control scheme that integrates control technology with communication technology to solve the delay problem is introduced for a class of networked control systems: Networked Half-Link Systems (NHLS). Concretely, we u...A control scheme that integrates control technology with communication technology to solve the delay problem is introduced for a class of networked control systems: Networked Half-Link Systems (NHLS). Concretely, we use the master-slave clock synchronization technology to evaluate the delays online, and then the LQ optimal control based on delays is adopted to stabilize the controlled plant. During the clock synchronization process, the error of evaluated delays is inevitably induced from the clock synchronization error, which will deteriorate the system performances, and even make system unstable in certain cases. Hence, the discussions about the clock error, and the related control analysis and design are also developed. Specifically, we present the sufficient conditions of controller parameters that guarantee the system stability, and a controller design method based on the error of delays is addressed thereafter. The experiments based on a CANbus platform are fulfilled, and the experimental results verify the previous analytic results finally.展开更多
By making use of the theory of stability for dynamical systems, a general approach for synchronization of chaotic systems with parameters perturbation is presented, and a general method for determining control functio...By making use of the theory of stability for dynamical systems, a general approach for synchronization of chaotic systems with parameters perturbation is presented, and a general method for determining control function is introduced. The Rossler system is employed to verify the effectiveness of the method, and the theoretical results are confirmed by simulations.展开更多
A new preamble structure is designed for wireless LAN based on MIMO OFDM systems, which can be used for both synchronization and channel estimation. Modulatable orthogonal polyphase sequence is utilized in training sy...A new preamble structure is designed for wireless LAN based on MIMO OFDM systems, which can be used for both synchronization and channel estimation. Modulatable orthogonal polyphase sequence is utilized in training symbol design regarding its correlation properties. The time synchronization and channel estimation are achieved by measuring the correlation between the received training sequence and the locally generated training sequence. Repeated training symbols are used to get carrier frequency offset (CFO) estimation. It is shown from the analysis that the accuracy of frequency synchronization is close to the Cramer-Rao lower bound. The training sequences are optimal for channel estimation based on the minimum mean square error (MMSE).展开更多
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, ...This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.展开更多
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique...This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.展开更多
A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial veloc...A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial velocity first, then forms the spatial velocity sample, and uses this spatial velocity sample to recognize each beat. The algorithm computes the averaged parameters by using averaged spatial velocity and the averaged ECG and the current parameters by using the current beat period and current width of QRS. The algorithm can recognize P, QRS and T onsets and ends of simultaneous 12 lead ECG precisely, and some arrhythmias such as premature ventricular beat, ventricular escape beat, R on T, bigeminy, trigeminy. The algorithm software works well on a real 8 channel ECG system and meets the demands of designing.展开更多
The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to cor...The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate funct...The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.展开更多
In this paper,we present a maximum likelihood(ML) based time synchronization algorithm for Wireless Body Area Networks(WBAN).The proposed technique takes advantage of soft information retrieved from the soft demapper ...In this paper,we present a maximum likelihood(ML) based time synchronization algorithm for Wireless Body Area Networks(WBAN).The proposed technique takes advantage of soft information retrieved from the soft demapper for the time delay estimation.This algorithm has a low complexity and is adapted to the frame structure specified by the IEEE 802.15.6standard[1]for the narrowband systems.Simulation results have shown good performance which approach the theoretical mean square error limit bound represented by the Cramer Rao Bound(CRB).展开更多
Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization ...Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.展开更多
This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a ...This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.展开更多
Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (ME...Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data.Consequently,inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy.On the other hand,POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated.Notorious example of correlation is found between GEO's orbital elements and its clock errors.We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy,with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency.Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE),which is the orbital error projected on a receiver's line-of-sight direction.Two-way radio-wave time transfer measurements are used to evaluate clock errors.Experimenting with data from the regional tracking network,we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS),and fitting of carrier phase is better than 1 cm.For orbital evaluation,difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS).For clock estimates evaluation,2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s/s,while receiver clock rates are about 1×10 13-1×10 12 s/s.For the 72-hour POD experiment,the average differences between POD satellite clock rates estimates and clock measurements based on TS system are about 1×10 13 s/s,and for receiver clock rates,the differences are about 1×10 15 s/s.展开更多
The study of synchronization and bursting transition is very important and valuable in cognitive activities and action control of brain as well as enhancement for the reliability of the cortex synapses. However, we wo...The study of synchronization and bursting transition is very important and valuable in cognitive activities and action control of brain as well as enhancement for the reliability of the cortex synapses. However, we wonder how the synaptic strength and synaptic delay, especially the asymmetrical time-delays between different neurons can collectively influence their synchronous firing behaviors. In this paper, based on the Hindmarsh-Rose neuronal systems with asymmetrical time-delays, we investigate the collective effects of various delays and coupling strengths on the synchronization and bursting transition. It is shown that the interplay between delay and coupling strength can not only enhance or destroy the synchronizations but also can induce the regular transitions of bursting firing patterns. Specifically, as the coupling strength or time-delay increasing, the firing patterns of the time-delayed coupling neuronal systems consistently present a regular transition, that is, the periods of spikes during the bursting firings increase firstly and then decrease slowly. In particular, in contrast to the case of symmetrical time-delays,asymmetrical time-delays can lead to the paroxysmal synchronizations of coupling neuronal systems, as well as the concentration level of synchronization for the non-identically coupled system is superior to the one of identical coupling. These results more comprehensively reveal the rich nonlinear dynamical behaviors of neuronal systems and may be helpful for us to have a better understanding of the neural coding.展开更多
In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements...In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements several geo-stationary satellites(GEO),time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites.Serving as space-borne relay stations,the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous(IGSO)and mid-earth orbit(MEO)satellites within the system.It is shown that,because of the accuracy in clock synchronization,the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS.In addition,the COMPASS system can function with its entire positioning,navigation,and time-dissemination services even without the ground link,thus making it much more robust and secure.We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy,to reach 100 ps in time dissemination and 3 cm in positioning accuracy,respectively.In this paper,we also analyze two feasible synchronization plans.All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given.We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.展开更多
Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchron...Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not o...This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.展开更多
基金国家重点基础研究发展计划(973计划),国家自然科学基金,the Innovation Funds for Laser Technology,国家自然科学基金,the Science Foundation of the China Academy of Engineering Physics
文摘The synchronization and asynchronization of two coupled excitable systems are investigated. The two systems with different initial configurations, which are separately a single spiral wave (or a travel wave) and the rest state, can be developed to the synchronizing state with the same spiral wave (or travel wave) in each system, when the coupling is very strong. Decreasing the coupling intensity, two rest states or two different configurations appear in the two systems. The qualitative analysis and interpretation are given.
文摘A control scheme that integrates control technology with communication technology to solve the delay problem is introduced for a class of networked control systems: Networked Half-Link Systems (NHLS). Concretely, we use the master-slave clock synchronization technology to evaluate the delays online, and then the LQ optimal control based on delays is adopted to stabilize the controlled plant. During the clock synchronization process, the error of evaluated delays is inevitably induced from the clock synchronization error, which will deteriorate the system performances, and even make system unstable in certain cases. Hence, the discussions about the clock error, and the related control analysis and design are also developed. Specifically, we present the sufficient conditions of controller parameters that guarantee the system stability, and a controller design method based on the error of delays is addressed thereafter. The experiments based on a CANbus platform are fulfilled, and the experimental results verify the previous analytic results finally.
文摘By making use of the theory of stability for dynamical systems, a general approach for synchronization of chaotic systems with parameters perturbation is presented, and a general method for determining control function is introduced. The Rossler system is employed to verify the effectiveness of the method, and the theoretical results are confirmed by simulations.
文摘A new preamble structure is designed for wireless LAN based on MIMO OFDM systems, which can be used for both synchronization and channel estimation. Modulatable orthogonal polyphase sequence is utilized in training symbol design regarding its correlation properties. The time synchronization and channel estimation are achieved by measuring the correlation between the received training sequence and the locally generated training sequence. Repeated training symbols are used to get carrier frequency offset (CFO) estimation. It is shown from the analysis that the accuracy of frequency synchronization is close to the Cramer-Rao lower bound. The training sequences are optimal for channel estimation based on the minimum mean square error (MMSE).
基金supported by the Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundation under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A61001National Basic Research Program of China (973 Program 2007CB814800)Programme for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C.Wong Magna Fund in Ningbo University
文摘This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60774039,60974024,and 61074089CityU Research Enhancement Fund 9360127,CityU SRG 7002355
文摘This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.
文摘A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial velocity first, then forms the spatial velocity sample, and uses this spatial velocity sample to recognize each beat. The algorithm computes the averaged parameters by using averaged spatial velocity and the averaged ECG and the current parameters by using the current beat period and current width of QRS. The algorithm can recognize P, QRS and T onsets and ends of simultaneous 12 lead ECG precisely, and some arrhythmias such as premature ventricular beat, ventricular escape beat, R on T, bigeminy, trigeminy. The algorithm software works well on a real 8 channel ECG system and meets the demands of designing.
文摘The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
基金supported by the National Natural Science Foundation of China under Grant Nos.10735030 and 90718041Shanghai Leading Academic Discipline Project under Grant No.B412+1 种基金Zhejiang Provincial Natural Science Foundations of China under Grant No.Y604056,Doctoral Foundation of Ningbo City under Grant No.2005A61030Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734
文摘The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.
基金supported by the franco-chinese NSFC-ANR program under the Greencocom Project
文摘In this paper,we present a maximum likelihood(ML) based time synchronization algorithm for Wireless Body Area Networks(WBAN).The proposed technique takes advantage of soft information retrieved from the soft demapper for the time delay estimation.This algorithm has a low complexity and is adapted to the frame structure specified by the IEEE 802.15.6standard[1]for the narrowband systems.Simulation results have shown good performance which approach the theoretical mean square error limit bound represented by the Cramer Rao Bound(CRB).
基金Project(61374054)supported by the National Natural Science Foundation of ChinaProject(2013JQ8038)supported by the Shanxi Provincal Natural Science Foundation Research Projection,China
文摘Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.
基金Supported by the National Natural Science Foundation of China under Grant No. 60674059
文摘This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.
基金supported by the Shanghai Committee of Science and Technology,China (Grant No.11ZR1443500)the National Natural Science Foundation of China (Grant No.11033004)
文摘Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data.Consequently,inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy.On the other hand,POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated.Notorious example of correlation is found between GEO's orbital elements and its clock errors.We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy,with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency.Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE),which is the orbital error projected on a receiver's line-of-sight direction.Two-way radio-wave time transfer measurements are used to evaluate clock errors.Experimenting with data from the regional tracking network,we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS),and fitting of carrier phase is better than 1 cm.For orbital evaluation,difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS).For clock estimates evaluation,2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s/s,while receiver clock rates are about 1×10 13-1×10 12 s/s.For the 72-hour POD experiment,the average differences between POD satellite clock rates estimates and clock measurements based on TS system are about 1×10 13 s/s,and for receiver clock rates,the differences are about 1×10 15 s/s.
基金supported by the National Natural Science Foundation of China(Grant Nos.11325208&11572015)the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates
文摘The study of synchronization and bursting transition is very important and valuable in cognitive activities and action control of brain as well as enhancement for the reliability of the cortex synapses. However, we wonder how the synaptic strength and synaptic delay, especially the asymmetrical time-delays between different neurons can collectively influence their synchronous firing behaviors. In this paper, based on the Hindmarsh-Rose neuronal systems with asymmetrical time-delays, we investigate the collective effects of various delays and coupling strengths on the synchronization and bursting transition. It is shown that the interplay between delay and coupling strength can not only enhance or destroy the synchronizations but also can induce the regular transitions of bursting firing patterns. Specifically, as the coupling strength or time-delay increasing, the firing patterns of the time-delayed coupling neuronal systems consistently present a regular transition, that is, the periods of spikes during the bursting firings increase firstly and then decrease slowly. In particular, in contrast to the case of symmetrical time-delays,asymmetrical time-delays can lead to the paroxysmal synchronizations of coupling neuronal systems, as well as the concentration level of synchronization for the non-identically coupled system is superior to the one of identical coupling. These results more comprehensively reveal the rich nonlinear dynamical behaviors of neuronal systems and may be helpful for us to have a better understanding of the neural coding.
基金supported by the Ministry of Science and Technology of China(Grant No.2010CB922901)Tsinghua University under its Scientific Research Initiative Program(Grant No.20091081474)a special research fund from the National Institute of Metrology of China(NIM)
文摘In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements several geo-stationary satellites(GEO),time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites.Serving as space-borne relay stations,the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous(IGSO)and mid-earth orbit(MEO)satellites within the system.It is shown that,because of the accuracy in clock synchronization,the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS.In addition,the COMPASS system can function with its entire positioning,navigation,and time-dissemination services even without the ground link,thus making it much more robust and secure.We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy,to reach 100 ps in time dissemination and 3 cm in positioning accuracy,respectively.In this paper,we also analyze two feasible synchronization plans.All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given.We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.
基金supported by the National Natural Science Foundation of China(Grant No.11103064)the Basic Research Foundation Program of Education Ministry Key Laboratory for Earth Space Environment and Geodetic survey,China(Grant No.11-01-06)
文摘Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.
基金This work was supported by National'Science Foundation for Distinguished Young Scholars under Grant No. 10825207, and in part by Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200430.
文摘This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.