The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain metho...The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain method. The simulation is performed in the environment of free space with a simplified three- dimensional human body model. Results show that the path loss at a higher radio frequency is significantly smaller. Given that the transmitter and the receiver are located on the body trunk, the path loss relevant to the proposed minimum equivalent surface distance follows a log-fitting parametric model, and the path loss exponents are 4. 7, 4. 1 and 4. 0 at frequencies of 2. 4, 5.2, 5.7 GHz, respectively. On the other hand, the first- arrival delays are less than 2 ns at all receivers, and the maximum time delay spread is about 10 ns. As suggested by the maximum time delay spread, transmission rates of W-BSN must be less than 10^8 symbol/s to avoid intersymbol interference from multiple-path delay.展开更多
Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale d...Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dissipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas turbulence augmentation model accounting for the f'mite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can properly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in experiments.展开更多
This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion:numerical schemes and time steps.Firstly,we compared three numerical schemes using idealized circulations.Results show that...This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion:numerical schemes and time steps.Firstly,we compared three numerical schemes using idealized circulations.Results show that the precisions of the advanced Adams-Bashfold-Moulton(ABM) method and the Runge-Kutta(RK) method were in the same order and both were much higher than that of the Euler method.Furthermore,the advanced ABM method is more efficient than the RK method in computational memory requirements and time consumption.We therefore chose the advanced ABM method as the Lagrangian particle-tracking algorithm.Secondly,we performed a sensitivity test for time steps,using outputs of the hydrodynamic model,Symphonie.Results show that the time step choices depend on the fluid response time that is related to the spatial resolution of velocity fields.The method introduced by Oliveira et al.in 2002 is suitable for choosing time steps of Lagrangian particle-tracking models,at least when only considering advection.展开更多
基金The High Technology Research and Development Program of Jiangsu Province (NoBG2005001)the Hong Kong Inno-vation and Technology Fund (NoITS/99/02)
文摘The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain method. The simulation is performed in the environment of free space with a simplified three- dimensional human body model. Results show that the path loss at a higher radio frequency is significantly smaller. Given that the transmitter and the receiver are located on the body trunk, the path loss relevant to the proposed minimum equivalent surface distance follows a log-fitting parametric model, and the path loss exponents are 4. 7, 4. 1 and 4. 0 at frequencies of 2. 4, 5.2, 5.7 GHz, respectively. On the other hand, the first- arrival delays are less than 2 ns at all receivers, and the maximum time delay spread is about 10 ns. As suggested by the maximum time delay spread, transmission rates of W-BSN must be less than 10^8 symbol/s to avoid intersymbol interference from multiple-path delay.
基金Supported by the State Key Development Program for Basic Research of China (No.2006CB200305), the National Natural Science Foundation of China (No.50376004), and Ph.D. Program Foundation of Ministry of Education of China (No.20030007028).
文摘Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dissipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas turbulence augmentation model accounting for the f'mite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can properly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in experiments.
基金Supported by the Project Lagrangian Zooplankton Computation and Experiment (CNRS Programme EC2CO)the National Natural Science Fundation of China (Nos. 40821004,40706059)
文摘This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion:numerical schemes and time steps.Firstly,we compared three numerical schemes using idealized circulations.Results show that the precisions of the advanced Adams-Bashfold-Moulton(ABM) method and the Runge-Kutta(RK) method were in the same order and both were much higher than that of the Euler method.Furthermore,the advanced ABM method is more efficient than the RK method in computational memory requirements and time consumption.We therefore chose the advanced ABM method as the Lagrangian particle-tracking algorithm.Secondly,we performed a sensitivity test for time steps,using outputs of the hydrodynamic model,Symphonie.Results show that the time step choices depend on the fluid response time that is related to the spatial resolution of velocity fields.The method introduced by Oliveira et al.in 2002 is suitable for choosing time steps of Lagrangian particle-tracking models,at least when only considering advection.