针对短视频序列推荐中存在的点击数据稀疏性、观看时长反馈中的噪声以及偏差问题,提出了一种基于时长感知的短视频序列推荐模型(duration-aware for short video sequential recommendation,DASR)。该模型通过对用户观看时长反馈的深入...针对短视频序列推荐中存在的点击数据稀疏性、观看时长反馈中的噪声以及偏差问题,提出了一种基于时长感知的短视频序列推荐模型(duration-aware for short video sequential recommendation,DASR)。该模型通过对用户观看时长反馈的深入建模,有效地缓解了数据稀疏性问题。提出了一种无偏差的多语义观看时长反馈标签生成方法。该方法结合了K近邻算法和训练数据的百分位数分析,动态生成适应不同视频时长的标签阈值,有效地消除了视频时长偏差的影响。提出了一种基于强弱注意力网络的噪声提取方法,从观看时长中准确地提取正向和负向兴趣信号,从而解决了观看时长反馈中存在的噪声。在开源的短视频数据集上进行了广泛实验,结果表明该模型在多个评价指标上优于其他主流方法。展开更多
文摘针对短视频序列推荐中存在的点击数据稀疏性、观看时长反馈中的噪声以及偏差问题,提出了一种基于时长感知的短视频序列推荐模型(duration-aware for short video sequential recommendation,DASR)。该模型通过对用户观看时长反馈的深入建模,有效地缓解了数据稀疏性问题。提出了一种无偏差的多语义观看时长反馈标签生成方法。该方法结合了K近邻算法和训练数据的百分位数分析,动态生成适应不同视频时长的标签阈值,有效地消除了视频时长偏差的影响。提出了一种基于强弱注意力网络的噪声提取方法,从观看时长中准确地提取正向和负向兴趣信号,从而解决了观看时长反馈中存在的噪声。在开源的短视频数据集上进行了广泛实验,结果表明该模型在多个评价指标上优于其他主流方法。