针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
针对一类考虑城市交通拥堵情况的时间依赖型多时间窗车辆路径问题(time-dependent vehicle routing problem with multiple time windows,TD_VRPMTW),提出一种混合离散灰狼算法(hybrid discrete grey wolf optimizer,HDGWO)进行求解。在...针对一类考虑城市交通拥堵情况的时间依赖型多时间窗车辆路径问题(time-dependent vehicle routing problem with multiple time windows,TD_VRPMTW),提出一种混合离散灰狼算法(hybrid discrete grey wolf optimizer,HDGWO)进行求解。在HDGWO中,设计了新的灰狼个体更新公式,采用基于客户排列的整数编码方式,使算法可直接在离散问题解空间中执行基于标准灰狼算法个体更新机理的全局搜索;设计了基于问题性质的种群初始化策略,用于生成具有高质量和多样性的初始种群;引入头狼信息交流公式,用于探索头狼形成的优质解空间;构造具有多种局部搜索操作的自适应变邻域局部搜索策略,用于增强算法的局部搜索能力。结果表明:HDGWO可有效求解TD_VRPMTW。展开更多
绿色车辆路径规划对物流配送领域的节能减排具有重要的现实意义。针对时间依赖型绿色车辆路径问题(time-dependent green vehicle routing problem,TDGVRP),考虑车辆不同出发时刻对行驶时间的影响,分析车辆时变速度、载重与碳排放率之...绿色车辆路径规划对物流配送领域的节能减排具有重要的现实意义。针对时间依赖型绿色车辆路径问题(time-dependent green vehicle routing problem,TDGVRP),考虑车辆不同出发时刻对行驶时间的影响,分析车辆时变速度、载重与碳排放率之间的关系,确定基于车辆时变速度和载重的碳排放率度量函数;在此基础上,以车辆油耗和碳排放成本、使用时间成本和固定成本、等待成本与人力成本之和作为目标函数,构建TDGVRP模型,并根据模型特点设计基于路段划分策略的车辆行驶时间计算方法,提出了改进蚁群算法。算例仿真结果表明,构建的模型和提出的算法能合理规划车辆出发时刻,有效规避交通拥堵时间段,降低配送总成本,减少油耗和碳排放。展开更多
针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间...针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间到VRPTW解空间的桥梁。同时为了提高算法的寻优能力,设计了由单点插入策略以及双点交换策略组成的局部搜索策略。通过solomon-50标准数据集中的九个算例进行仿真实验,实验结果证明了所提出算法的寻优能力和稳定性均优于对比算法,最优解误差相较于对比算法最多降低了38.32%。展开更多
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。
文摘针对一类考虑城市交通拥堵情况的时间依赖型多时间窗车辆路径问题(time-dependent vehicle routing problem with multiple time windows,TD_VRPMTW),提出一种混合离散灰狼算法(hybrid discrete grey wolf optimizer,HDGWO)进行求解。在HDGWO中,设计了新的灰狼个体更新公式,采用基于客户排列的整数编码方式,使算法可直接在离散问题解空间中执行基于标准灰狼算法个体更新机理的全局搜索;设计了基于问题性质的种群初始化策略,用于生成具有高质量和多样性的初始种群;引入头狼信息交流公式,用于探索头狼形成的优质解空间;构造具有多种局部搜索操作的自适应变邻域局部搜索策略,用于增强算法的局部搜索能力。结果表明:HDGWO可有效求解TD_VRPMTW。
文摘绿色车辆路径规划对物流配送领域的节能减排具有重要的现实意义。针对时间依赖型绿色车辆路径问题(time-dependent green vehicle routing problem,TDGVRP),考虑车辆不同出发时刻对行驶时间的影响,分析车辆时变速度、载重与碳排放率之间的关系,确定基于车辆时变速度和载重的碳排放率度量函数;在此基础上,以车辆油耗和碳排放成本、使用时间成本和固定成本、等待成本与人力成本之和作为目标函数,构建TDGVRP模型,并根据模型特点设计基于路段划分策略的车辆行驶时间计算方法,提出了改进蚁群算法。算例仿真结果表明,构建的模型和提出的算法能合理规划车辆出发时刻,有效规避交通拥堵时间段,降低配送总成本,减少油耗和碳排放。
文摘针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间到VRPTW解空间的桥梁。同时为了提高算法的寻优能力,设计了由单点插入策略以及双点交换策略组成的局部搜索策略。通过solomon-50标准数据集中的九个算例进行仿真实验,实验结果证明了所提出算法的寻优能力和稳定性均优于对比算法,最优解误差相较于对比算法最多降低了38.32%。