We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We inves...We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons,bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential,periodically modulated harmonic trap potential,and kinklike modulated harmonic trap potential.Through the Feshbach resonance,these dynamics can be realized in experiments by suitable control of time-dependent trap parameters,atomic interactions,and interaction with thermal cloud.展开更多
We present three families of one-soliton solutions for (2+1)-dimensional Gross-Pitaevskii equation with both time-dependent scattering length and gain or loss in a harmonic trap. Then we investigate the dynamics of...We present three families of one-soliton solutions for (2+1)-dimensional Gross-Pitaevskii equation with both time-dependent scattering length and gain or loss in a harmonic trap. Then we investigate the dynamics of these solitons in Bose-Einstein condensate8 (BECs) by some selected control functions. Our results show that the intensities of these solitons first increase rapidly to the condensation peak, then decay very slowly to the background; thus the lifetime of a bright soliton, a train of bright solitons and a dark soliton in BECs can be all greatly extended. Our results offer a useful method for observing matter-wave solitons in BECs in future experiments.展开更多
The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types...The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is show that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11041003 and 60802087the Natural Science Foundation of Jiangsu Province under Grant No.BK2004119
文摘We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons,bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential,periodically modulated harmonic trap potential,and kinklike modulated harmonic trap potential.Through the Feshbach resonance,these dynamics can be realized in experiments by suitable control of time-dependent trap parameters,atomic interactions,and interaction with thermal cloud.
基金Supported by NSFC under Grant Nos. 11041003, 10735030, 10874235, 10934010, 60978019, the NKBRSFC under Grant Nos. 2009CB930701, 2010CB922904, and 2011CB921500Zhejiang Provincial NSF under Grant No. Y6090592+1 种基金Ningbo Natural Science Foundation under Grant Nos. 2010A610095, 2010A610103, and 2009B21003K.C. Wong Magna Fund in Ningbo University
文摘We present three families of one-soliton solutions for (2+1)-dimensional Gross-Pitaevskii equation with both time-dependent scattering length and gain or loss in a harmonic trap. Then we investigate the dynamics of these solitons in Bose-Einstein condensate8 (BECs) by some selected control functions. Our results show that the intensities of these solitons first increase rapidly to the condensation peak, then decay very slowly to the background; thus the lifetime of a bright soliton, a train of bright solitons and a dark soliton in BECs can be all greatly extended. Our results offer a useful method for observing matter-wave solitons in BECs in future experiments.
基金Supported by the National Natural Science Foundation of China under Grant No.10905019the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,No.IRT0964)the Construct Program of the National Key Discipline
文摘The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is show that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.