A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive pa...A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive part and the convective part by adopting the operator-splitting algorithm. For the diffusive part, the temporal discretization is performed by the backward difference method which yields an implicit scheme and the spatial discretization is performed by the standard Galerkin method. The convective part can be discretized using the characteristic Galerkin method and solved explicitly. The driven square flow and backward-facing step flow are conducted to validate the model. It is shown that the numerical results agree well with the standard solutions or existing experimental data, and the present model has high accuracy and good stability. It provides a prospective research method for solving N-S equations.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41072235, 50809008)the Hong Kong Research Grants Council (Grant No. HKU 7171/06E)+1 种基金the National Basic Research Program of China ("973" Project) (Grant No. 2007CB209400)the Natural Science Foundation of LiaoNing Province of China (Grant No. 20102006)
文摘A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive part and the convective part by adopting the operator-splitting algorithm. For the diffusive part, the temporal discretization is performed by the backward difference method which yields an implicit scheme and the spatial discretization is performed by the standard Galerkin method. The convective part can be discretized using the characteristic Galerkin method and solved explicitly. The driven square flow and backward-facing step flow are conducted to validate the model. It is shown that the numerical results agree well with the standard solutions or existing experimental data, and the present model has high accuracy and good stability. It provides a prospective research method for solving N-S equations.