近年来,随着我国电网系统电压等级的逐步提高以及一次设备电抗和阻抗比值的增大,导致电网中短路电流直流分量的衰减时间常数逐渐增大,直接影响对电网系统起重要控制和保护作用的断路器开断能力,进而影响整个电网的安全运行。该文通过关...近年来,随着我国电网系统电压等级的逐步提高以及一次设备电抗和阻抗比值的增大,导致电网中短路电流直流分量的衰减时间常数逐渐增大,直接影响对电网系统起重要控制和保护作用的断路器开断能力,进而影响整个电网的安全运行。该文通过关于直流分量时间常数对短路电流和断路器开断性能影响的分析,同时结合工程实践,提出了一种压气式SF_(6)断路器能否成功开断较大直流分量时间常数的短路电流判别方法,并采用热态气流场仿真计算和试验方法,验证了该判别方法的合理性。结果表明,当系统短路电流直流分量时间常数从45 ms提高到120 ms时,363 k V SF_(6)断路器在非对称短路电流开断试验(T100a)中短燃弧时间减小0.5 ms,长燃弧时间增大2 ms,导致断路器的有效开断区间需要增加7%。对于压气式SF_(6)断路器,为了保证能够成功开断直流分量时间常数较大(120 ms或者更高)的长燃弧,断路器需要具有足够的有效开断区间,且在长燃弧开断点应具有2.5 m/s以上的分闸速度。该结论为判别电网中断路器在短路电流直流分量时间常数不断增大时能否安全可靠运行提供了一种科学且有效的方法。展开更多
The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated predi...The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated prediction effect of ARIMA model is good by Ljung-Box Q-test and R2, and the model can be used for prediction on future atmosphere pollutant changes.展开更多
To study the effects of different storage methods and time on content of nutrients in biogas slurry of straw, two storage methods were carried out on biogas slurry between open storage and airtight storage conditions ...To study the effects of different storage methods and time on content of nutrients in biogas slurry of straw, two storage methods were carried out on biogas slurry between open storage and airtight storage conditions at normal atmospheric temperature. The contents of N, P, K, and organic matter in biogas slurry of straw were determined in different storage times. The results showed that: during the pro-cess of biogas slurry storage, little change occurred in the content of the organic matter while the total content of N, P, K significantly declined; up to 50 days, the total content of N, P, K reduced to nearly 80%-90%. Because the contents of N, P, K in biogas slurry reduced less in airtight storage conditions so that a better re-sult was found on airtight storage methods than open storage methods in fertilizer field of biogas slurry of straw.展开更多
The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna co...The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.展开更多
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres...High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.展开更多
Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th...Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.展开更多
The exciton relaxation kinetics of ZnCuInS/ZnSe/ZnS quantum dots (QDs) is investigated by time-resolved spectroscopy techniques in detail. Based on the rate distribution model, the wavelength-dependent emission dyna...The exciton relaxation kinetics of ZnCuInS/ZnSe/ZnS quantum dots (QDs) is investigated by time-resolved spectroscopy techniques in detail. Based on the rate distribution model, the wavelength-dependent emission dynamics shows that the intrinsic exciton, the exciton in the interface defect state and that in donor-acceptor pair state (DAPS) together participate in the photoluminescence process of QDs, and the whole emission process is mainly dependent on the DAPS emission. Transient absorption data show that the intrinsic exciton and the interface defect species maybe together appear after excitation and the intensity-dependent Auger recombination process also exists in QDs at high excitation intensity.展开更多
Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the advers...Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.展开更多
文摘近年来,随着我国电网系统电压等级的逐步提高以及一次设备电抗和阻抗比值的增大,导致电网中短路电流直流分量的衰减时间常数逐渐增大,直接影响对电网系统起重要控制和保护作用的断路器开断能力,进而影响整个电网的安全运行。该文通过关于直流分量时间常数对短路电流和断路器开断性能影响的分析,同时结合工程实践,提出了一种压气式SF_(6)断路器能否成功开断较大直流分量时间常数的短路电流判别方法,并采用热态气流场仿真计算和试验方法,验证了该判别方法的合理性。结果表明,当系统短路电流直流分量时间常数从45 ms提高到120 ms时,363 k V SF_(6)断路器在非对称短路电流开断试验(T100a)中短燃弧时间减小0.5 ms,长燃弧时间增大2 ms,导致断路器的有效开断区间需要增加7%。对于压气式SF_(6)断路器,为了保证能够成功开断直流分量时间常数较大(120 ms或者更高)的长燃弧,断路器需要具有足够的有效开断区间,且在长燃弧开断点应具有2.5 m/s以上的分闸速度。该结论为判别电网中断路器在短路电流直流分量时间常数不断增大时能否安全可靠运行提供了一种科学且有效的方法。
基金Supported by Student Research Fund of Agricultural University of Hebei(cxzr2014023)Technology Fund of Agricultural University of Hebei(ZD201406)~~
文摘The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated prediction effect of ARIMA model is good by Ljung-Box Q-test and R2, and the model can be used for prediction on future atmosphere pollutant changes.
基金Supported by Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period(2012BAJ21B04-04)Shandong Environment Bottlenecks Analysis Project(SDHBPJ-ZB-05)~~
文摘To study the effects of different storage methods and time on content of nutrients in biogas slurry of straw, two storage methods were carried out on biogas slurry between open storage and airtight storage conditions at normal atmospheric temperature. The contents of N, P, K, and organic matter in biogas slurry of straw were determined in different storage times. The results showed that: during the pro-cess of biogas slurry storage, little change occurred in the content of the organic matter while the total content of N, P, K significantly declined; up to 50 days, the total content of N, P, K reduced to nearly 80%-90%. Because the contents of N, P, K in biogas slurry reduced less in airtight storage conditions so that a better re-sult was found on airtight storage methods than open storage methods in fertilizer field of biogas slurry of straw.
文摘The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.
基金supported by the National Key Basic Research Program of China (2011CB013104)National Natural Science Foundation of China (U1134004)+2 种基金Guangdong Provincial Natural Science Foundation (2015A030312008)Science and Technology Program of Guangzhou (201510010281)Guangdong Provincial Science and Technology Plan (2013B010402014)
文摘High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.
基金Projects(61227006,61473206) supported by the National Natural Science Foundation of ChinaProject(13TXSYJC40200) supported by Science and Technology Innovation of Tianjin,China
文摘Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
文摘The exciton relaxation kinetics of ZnCuInS/ZnSe/ZnS quantum dots (QDs) is investigated by time-resolved spectroscopy techniques in detail. Based on the rate distribution model, the wavelength-dependent emission dynamics shows that the intrinsic exciton, the exciton in the interface defect state and that in donor-acceptor pair state (DAPS) together participate in the photoluminescence process of QDs, and the whole emission process is mainly dependent on the DAPS emission. Transient absorption data show that the intrinsic exciton and the interface defect species maybe together appear after excitation and the intensity-dependent Auger recombination process also exists in QDs at high excitation intensity.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(12CX06071A)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.