期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究 被引量:7
1
作者 符海月 张祎婷 《地球信息科学学报》 CSCD 北大核心 2019年第7期1132-1142,共11页
合理构建PM2.5浓度预测模型是科学、准确地预测PM2.5浓度变化的关键。传统PM2.5预测EEMD-GRNN模型具有较好的预测精度,但是存在过于关注研究数据本身而忽略其物理意义的不足。本研究基于南京市2014-2017年PM2.5浓度时间序列数据,分析PM... 合理构建PM2.5浓度预测模型是科学、准确地预测PM2.5浓度变化的关键。传统PM2.5预测EEMD-GRNN模型具有较好的预测精度,但是存在过于关注研究数据本身而忽略其物理意义的不足。本研究基于南京市2014-2017年PM2.5浓度时间序列数据,分析PM2.5浓度多尺度变化特征及其对气象因子和大气污染因子的尺度响应,基于时间尺度重构进行EEMD-GRNN模型的改进与实证研究。南京市样本数据PM2.5浓度变化表现为明显的天际尺度和月际尺度,从重构尺度(天际、月际)构建GRNN模型更具有现实意义;同时,PM2.5对PM10、NO2、O3、RH、MinT等因子存在多尺度响应效应,以其作为GRNN模型中的输入变量更具有时间序列上的解释意义。改进后的EEMD-GRNN模型具有更高的PM2.5浓度预测精度,MAE、MAPE、RMSE和R2分别为6.17、18.41%、8.32和0.95,而传统EEMD-GRNN模型的模型有效性检验结果分别为8.37、27.56%、11.56、0.91。对于高浓度天(PM2.5浓度大于100μg/m^3)的预测,改进模型更是全面优于传统EEMD-GRNN模型,MAPE为12.02%,相较于传统模型提高了9.03%。 展开更多
关键词 南京市 PM25 本征模函数 时间尺度重构 尺度响应 集合经验模态分解 广义回归神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部