期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究
被引量:
7
1
作者
符海月
张祎婷
《地球信息科学学报》
CSCD
北大核心
2019年第7期1132-1142,共11页
合理构建PM2.5浓度预测模型是科学、准确地预测PM2.5浓度变化的关键。传统PM2.5预测EEMD-GRNN模型具有较好的预测精度,但是存在过于关注研究数据本身而忽略其物理意义的不足。本研究基于南京市2014-2017年PM2.5浓度时间序列数据,分析PM...
合理构建PM2.5浓度预测模型是科学、准确地预测PM2.5浓度变化的关键。传统PM2.5预测EEMD-GRNN模型具有较好的预测精度,但是存在过于关注研究数据本身而忽略其物理意义的不足。本研究基于南京市2014-2017年PM2.5浓度时间序列数据,分析PM2.5浓度多尺度变化特征及其对气象因子和大气污染因子的尺度响应,基于时间尺度重构进行EEMD-GRNN模型的改进与实证研究。南京市样本数据PM2.5浓度变化表现为明显的天际尺度和月际尺度,从重构尺度(天际、月际)构建GRNN模型更具有现实意义;同时,PM2.5对PM10、NO2、O3、RH、MinT等因子存在多尺度响应效应,以其作为GRNN模型中的输入变量更具有时间序列上的解释意义。改进后的EEMD-GRNN模型具有更高的PM2.5浓度预测精度,MAE、MAPE、RMSE和R2分别为6.17、18.41%、8.32和0.95,而传统EEMD-GRNN模型的模型有效性检验结果分别为8.37、27.56%、11.56、0.91。对于高浓度天(PM2.5浓度大于100μg/m^3)的预测,改进模型更是全面优于传统EEMD-GRNN模型,MAPE为12.02%,相较于传统模型提高了9.03%。
展开更多
关键词
南京市
PM25
本征模函数
时间尺度重构
多
尺度
响应
集合经验模态分解
广义回归神经网络
原文传递
题名
时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究
被引量:
7
1
作者
符海月
张祎婷
机构
南京农业大学土地管理学院
出处
《地球信息科学学报》
CSCD
北大核心
2019年第7期1132-1142,共11页
基金
国家自然科学基金项目(41871319)~~
文摘
合理构建PM2.5浓度预测模型是科学、准确地预测PM2.5浓度变化的关键。传统PM2.5预测EEMD-GRNN模型具有较好的预测精度,但是存在过于关注研究数据本身而忽略其物理意义的不足。本研究基于南京市2014-2017年PM2.5浓度时间序列数据,分析PM2.5浓度多尺度变化特征及其对气象因子和大气污染因子的尺度响应,基于时间尺度重构进行EEMD-GRNN模型的改进与实证研究。南京市样本数据PM2.5浓度变化表现为明显的天际尺度和月际尺度,从重构尺度(天际、月际)构建GRNN模型更具有现实意义;同时,PM2.5对PM10、NO2、O3、RH、MinT等因子存在多尺度响应效应,以其作为GRNN模型中的输入变量更具有时间序列上的解释意义。改进后的EEMD-GRNN模型具有更高的PM2.5浓度预测精度,MAE、MAPE、RMSE和R2分别为6.17、18.41%、8.32和0.95,而传统EEMD-GRNN模型的模型有效性检验结果分别为8.37、27.56%、11.56、0.91。对于高浓度天(PM2.5浓度大于100μg/m^3)的预测,改进模型更是全面优于传统EEMD-GRNN模型,MAPE为12.02%,相较于传统模型提高了9.03%。
关键词
南京市
PM25
本征模函数
时间尺度重构
多
尺度
响应
集合经验模态分解
广义回归神经网络
Keywords
Nanjing
PM25
intrinsic mode function(IMF)
time scale reconstruction
multi-scale response
ensemble empirical mode decomposition
generalized regression neural network
分类号
X513 [环境科学与工程—环境工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究
符海月
张祎婷
《地球信息科学学报》
CSCD
北大核心
2019
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部